Insuficiencia dinámica manufacturera y estancamiento económico en México, 1982-2010

Análisis y recomendaciones de política

Universidad Autónoma de Ciudad Juárez

Javier Sánchez Carlos Rector

David Ramírez Perea Secretario General

René Soto Cavazos Director del Instituto de Ciencias Sociales y Administración

Servando Pineda Jaimes

Director General de Difusión Cultural
y Divulgación Científica

Coordinadora de la colección Consuelo Pequeño Rodríguez

Universidad Autónoma de Ciudad Juárez

Insuficiencia dinámica manufacturera y estancamiento económico en México, 1982-2010

Análisis y recomendaciones de política

Isaac Leobardo Sánchez Juárez

Volumen 7

Insuficiencia dinámica manufacturera y estancamiento económico en México, 1982-2010. Análisis y recomendaciones de política Primera edición, 2011

D.R. © Isaac Leobardo Sánchez Juárez

© Universidad Autónoma de Ciudad Juárez, Avenida Plutarco Elías Calles 1210, Fovissste Chamizal Ciudad Juárez, Chihuahua, México C.P. 32310

Sánchez Juárez, Isaac Leobardo

Insuficiencia dinámica manufacturera y estancamiento económico en México, 1982 – 2010: análisis y recomendaciones de política / Isaac Leobardo Sánchez Juárez. Ciudad Juárez, Chih. : Universidad Autónoma de Ciudad, 2011. 372 p.; 22 cm.

Incluye bibliografía

ISBN: 978-607-7953-19-7 (Colección INCISO) ISBN: 978-607-7953-26-5 (Volumen 7)

Contenido: el objetivo de la presente investigación es analizar el problema del estancamiento económico mexicano utilizando las técnicas que ofrece la ciencia económica. Además de explicar, se recomiendan, sobre la base de la teoría y la evidencia empírica, algunas estrategias que el Estado puede poner en marcha para solucionar el problema. Explicaciones rigurosas y propuestas de solución.

México - Condiciones económicas - 1982-2010
México - Condiciones sociales - 1982-2010
México - Política y gobierno - 1982-2010
México - Política económica - 1982-2010
Industrialización - México - 1982 -2010
Industrias manufactureras - México - 1982 -2010

HC135 S35 2010

Apoyado con recursos PIFI

La edición, diseño y producción editorial de este documento estuvo a cargo de la Dirección General de Difusión Cultural y Divulgación Científica, a través de la Subdirección de Publicaciones Cuidado de la edición: Subdirección de Publicaciones Diseño de colección: Karla María Rascón González

> Impreso en México / Printed in Mexico http://www2.uacj.mx/publicaciones/

"A mi madre por invertir alma, corazón y vida en mi educación"

Índice

Introdu	cción	11
	Capítulo I	
Manufa	cturas y crecimiento económico. La teoría	21
1.1 Intr	oducción	21
1.2 Prii	neras explicaciones del estancamiento	23
1.2.1	Teorema de Smith: división del trabajo,	
	especialización y extensión del mercado	24
1.2.2	Rendimientos crecientes	
	y progreso económico en Young	32
1.3 Ind	ustria, trampas de subdesarrollo	
у са	usación acumulativa	35
1.3.1	La salida del estancamiento económico	
	por medio de la industrialización	36
1.3.2	Problemas para la formación de capital	
	y trampas del subdesarrollo	39
1.3.3	El principio de la causación circular	
	acumulativa	45
1.3.4	Crecimiento desequilibrado, economías	
	externas y efecto de complementariedad	
	en la industria	51
1.4 Exp	licación kaldoriana del crecimiento:	
mai	nufacturas y rendimientos crecientes	5 6
1.4.1.	Modelo de crecimiento económico kaldoriano	57
1.5 Cond	clusiones	66

Capítulo II

Estanca	miento económico e insuficiencia	
dinámic	ca manufacturera en México, 1982-2010	69
2.1 Intr	oducción	69
2.2 Esta	ado, industria y desempeño económico	
	México, 1900-1982	71
2.2.1	La formación y consolidación	
	del Estado nacional	72
2.2.2	Estado, industrialización y crecimiento	
	económico	78
2.2.3	La industria en México	81
2.3 Esta	ancamiento y crecimiento	
mae	croeconómico, 1982-2010	91
2.3.1	Estancamiento económico en México	93
2.3.2	Estancamiento del empleo en México	109
2.3.3	Algunas explicaciones al estancamiento	
	económico	114
2.3.4	Principales acontecimientos en la economía	120
	2.3.4.1 Crecimiento cero y ajuste	
	estructural, 1982-1994	124
2.3.4.2	Era TLCAN y estancamiento	
	estabilizador, 1994-2010	129
2.3.5	Notas sobre la política industrial	
	del modelo de apertura y estabilización	131
2.4 Des	empeño industrial manufacturero,	
una	macroperspectiva, 1993-2008	137
2.4.1	Número de establecimientos, personal	
	ocupado y valor agregado	138
2.4.2	Remuneraciones, inversión y productividad	144
2.5 Cone	clusiones	152

Capítulo III

Industri	ia manufacturera, motor del crecimiento	
económ	ico. Evidencia econométrica	157
3.1 Intro	oducción	157
3.2 La ir	idustria como motor del crecimiento	
eco	nómico. Resumen de evidencias	159
3.3 Mod	lelos econométricos y métodos	
de e	estimación	171
3.3.1	La industria manufacturera como motor	
	del crecimiento económico en México	171
3.3.2.	Ley Verdoorn-Kaldor y rendimientos	
	crecientes en las manufacturas	173
3.3.3	Sobre los datos	178
	3.3.3.1 Datos para la estimación	
	de la primera ley de Kaldor	178
	3.3.3.2 Datos para la estimación	
	de la ley Verdoorn-Kaldor	180
3.4 Esta	ncamiento económico y leyes de Kaldor:	
resu	ıltados econométricos	182
3.4.1	Resultados para la primera ley de Kaldor	183
	3.4.1.1 Estimaciones de sección cruzada	183
	3.4.1.2 Estimaciones de series de tiempo	186
	3.4.1.3 Estimaciones en panel	194
3.4.2	Resultados de la estimación de la ley	
	Verdoorn-Kaldor	197
	3.4.2.1 Estimaciones de sección cruzada	197
	3.4.2.2 Estimaciones de series de tiempo	200
	3.4.2.3 Estimaciones en panel	206
3.4.3	Tercera ley de Kaldor	214
3 5 Cone	cluciones	215

Capítulo IV

Recomendaciones de política economica	
para superar el estancamiento	219
4.1 Introducción	219
4.2 La reforma hacendaria, requisito	
indispensable del cambio	220
4.2.1 Consideraciones sobre el gasto público	223
4.2.2 Política monetaria y sistema financiero	225
4.3 Política macroeconómica para el crecimiento	226
4.4 Hacia una nueva política industrial	
para superar el estancamiento	230
4.4.1 Diez principios para el diseño	
de una política industrial	232
4.5 Política industrial para el crecimiento	
en México	234
4.6 Conclusiones	246
Conclusiones generales	247
Bibliografía	251
Anexo 1	
Datos básicos utilizados en las estimaciones	
econométricas	265
Anexo 2	
Estimaciones econométricas	327
Sección cruzada	327
Series de tiempo	339
Datos en panel	343
Sección cruzada	347
Datos en panel	356

Introducción

n 2010 se celebraron doscientos años de consumada la Independencia política de México y cien años de la revolución. Lo anterior es motivo de satisfacción para los mexicanos, pero desafortunadamente también se cumplieron veintiocho años, poco más de un cuarto de siglo, de estancamiento económico.

Como se demuestra en esta investigación, la economía nacional ha presentado, en una perspectiva de largo plazo, negativos o insignificantes índices.

Las constantes del periodo 1982-2010 son las bajas tasas y crisis recurrentes en 1982, 1986, 1995, 2001 y 2009. La economía, al no crecer, ha sido incapaz de ofrecer el empleo que requiere la población. Como consecuencia de lo anterior, se ha reducido el ingreso y se ha disparado la pobreza de forma alarmante.

La celebración del bicentenario y centenario es una oportunidad para analizar las causas de los magros resultados económicos, desde diferentes aristas y perspectivas disciplinarias. Es el momento de trabajar en el diseño y puesta en marcha de políticas que coadyuven a mitigar este grave problema. De lo contrario, crecerá el descontento y el tejido social se fracturará conduciendo al país a la ruina.

En este sentido, el objetivo de la presente investigación es analizar el problema del estancamiento económico mexicano utilizando las técnicas que ofrece la ciencia económica. Pero además de explicar, se recomiendan, sobre la base de la teoría y la evidencia empírica, algunas estrategias que el

Estado puede poner en marcha para solucionar el problema. Explicaciones rigurosas y propuestas de solución es lo que el lector encontrará en las siguientes páginas.

Dirigida por las teorías de la causación circular y la kaldoriana del crecimiento, la investigación demuestra que el estancamiento económico se debe, principalmente, a la insuficiencia dinámica de las manufacturas, a la industrialización trunca y a las políticas aplicadas durante el periodo 1982-2010, que en lo sucesivo se denomina Modelo de Apertura y Estabilización Macroeconómica (MAEM).

Congruente con lo anterior, también se establece que una condición necesaria, aunque no suficiente, para superar el "bache" es la intensificación del proceso de industrialización de la economía y que ésta se traduzca en un aumento sistemático en la generación de empleos y productividad.

El sector manufacturero es el más importante de una economía, porque su auge produce externalidades positivas y encadenamientos al resto del sistema. Sin manufacturas en desarrollo se reducen las posibilidades de conectar y ampliar la producción de los demás sectores. Son, entonces, el motor del crecimiento económico, ya que de su sano funcionamiento y vinculación armónica con el resto de actividades dependen la producción y el empleo.

Las manufacturas se constituyen en el sector más importante debido a: 1) la existencia de rendimientos crecientes, 2) sus productos tienen una alta elasticidad ingreso de la demanda, como consecuencia de la complejidad, creatividad e innovación que integra su realización, y por el hecho de que la mayoría de los insumos son manufacturas (bienes intermedios, bienes de capital); 3) tienen una alta elasticidad de oferta de largo plazo, 4) sus altos precios relativos respecto a la minería y la agricultura, 5) su capacidad para ayudar a superar la restricción de balanza de pagos; 6) su papel como fuentes de innovación y difusión tecnológica. Todos estos elementos permiten entender su relevancia.

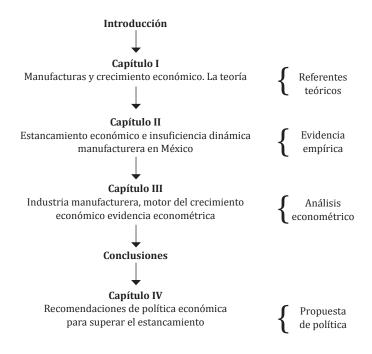
Robert Lucas, premio Nobel de economía, afirma que existen tantos determinantes del crecimiento económico como seamos capaces de imaginarlos, ya que toda actividad económica es el resultado de la acción humana. A esto habría que agregar los efectos de la naturaleza, como el clima y la geografía. Entonces, la clave para comprender las causas del crecimiento, o en nuestro caso el estancamiento, se encuentra en concentrarse en los determinantes próximos, los principales, y no en los últimos.

De poco serviría hacer una larga lista de variables, que aparentemente explican la problemática, porque, de acuerdo con la regla de Pareto, un ochenta por ciento de las variables ofrece un veinte por ciento de las respuestas, o viceversa.

Desde la perspectiva en la que aquí se confía, la clave radica en la estructura económica, el tipo de actividades en las que una economía se especializa, la configuración sectorial; específicamente, se cree que el desempeño industrial-manufacturero retrasa o acelera la marcha de la economía.

A partir de lo indicado, surge entonces la pregunta central de la investigación: ¿cuál es la causa principal del estancamiento económico en México de 1982 al 2010? Vinculada con esta interrogante, dado el marco teórico que se utiliza como referente, surgen otras adicionales: ¿las manufacturas representan el motor del crecimiento?, ¿el incremento de la producción manufacturera determina la productividad laboral y el empleo manufacturero?, ¿existen rendimientos crecientes en las manufacturas mexicanas?, ¿el aumento de la producción manufacturera genera círculos virtuosos de crecimiento?, ¿la insuficiencia dinámica de las manufacturas se encuentra detrás del círculo vicioso de estancamiento económico vigente en México?

La pregunta central, entonces, es el objetivo general de la investigación: analizar el estancamiento prevaleciente en la economía mexicana desde principios de los ochenta y su vinculación con el proceso de industrialización trunca y las bajas tasas del sector industrial manufacturero.


Las otras interrogantes se enmarcan en los siguientes cinco objetivos específicos: 1) explicar por qué las manufacturas son el motor del crecimiento; 2) demostrar que una mayor producción incrementa la productividad y el empleo en las manufacturas; 3) evaluar la existencia de rendimientos crecientes en las manufacturas; 4) exhibir que el estancamiento económico, tanto en el producto como en el empleo, es resultado de la insuficiencia dinámica manufacturera; y 5) proponer, a la luz de la revisión teórico-empírica, algunos elementos de política económica que ayuden a mitigar el problema, concretamente, reflexionar sobre las diferentes opciones en materia de política industrial.

Como consecuencia lógica de lo anterior, la hipótesis que guía la investigación es la siguiente: la primum mobile del estancamiento de la economía mexicana está en la insuficiencia dinámica del sector manufacturero, lo cual es consecuencia, entre otras cosas, de un proceso de sustitución de importaciones iniciado en la década de los cuarenta, el cual quedó inconcluso, al pasar de la fase de cambio de bienes de consumo a la de bienes intermedios y de capital, lo que evitó la formación de un núcleo endógeno de dinamización tecnológica. A esto se suma el proceso de apertura externa, desregulación y privatización iniciado en los ochenta, reforzado con la entrada en vigor del Tratado de Libre Comercio con América del Norte (TLCAN). La industrialización incompleta y las políticas del MAEM han mermado la producción manufacturera no maquiladora, lo que a su vez condujo a una reducción de la productividad laboral. Esto alienta, en cierta medida, la desindustrialización, cuyos impactos recaen sobre el empleo en éste y otros sectores. En consecuencia, se tiene un modelo de causación circular acumulativa vicioso, donde los bajos niveles del sector manufacturero reducen la productividad, v esto a su vez disminuye el crecimiento tanto manufacturero, del empleo y del resto de sectores de la economía.

El método utilizado para la contrastación fue el hipotético-deductivo, ya que se consideró que las teorías científicas son hipótesis desde las cuales es posible obtener enunciados comprobables con base en la observación; de esta forma, cuando sucesivas observaciones experimentales señalan que son falsas dichas afirmaciones, la hipótesis es rechazada. Pero cuando supera el esfuerzo de demostrar su falsedad, es aceptada, con carácter provisional, ya que no existe teoría científica que pueda ser establecida de forma concluyente.

El reporte de la investigación se compone de tres capítulos centrales y un cuarto reservado a las recomendaciones de política industrial para salir del estancamiento.

Insuficiencia dinámica manufacturera y estancamiento económico en México, 1982-2010. Análisis y recomendaciones de política

En el primero, además de presentar los fundamentos teóricos mencionados, se exponen las ideas de un grupo de autores que dieron forma a la que hoy se conoce como teoría de la causación circular acumulativa, que establece que el crecimiento en el producto es causa del crecimiento de la productividad y éste fomenta el crecimiento en el producto manufacturero. Entonces, la productividad y el producto son interdependientes y se autorrefuerzan.

El marco teórico incluye la existencia de rendimientos crecientes; complementariedades en la inversión, producción y consumo; cambio tecnológico endógeno, información imperfecta y una relación capital a trabajo que depende de la extensión del mercado y en menor medida del precio de los factores.

De especial importancia en este capítulo es la presentación del modelo kaldoriano, según el cual, el crecimiento es de naturaleza circular y acumulativa, basado en el sector manufacturero.

En la teoría kaldoriana la productividad laboral es endógena y está determinada por la manufacturera; en la medida en que se genera más producto, los trabajadores adquieren destrezas y habilidades que les permiten producir más con menos insumos. Además, una elevada producción reduce los costos, lo que deja invertir el excedente en mejores equipos de capital, lo que a su vez redunda también en más productividad.

De acuerdo con el modelo, en la primera etapa o economía cerrada, el crecimiento del excedente agropecuario es la principal fuente de demanda para las manufacturas, así como de oferta de trabajo y de capital. Consecuentemente, es la tasa de progreso en las actividades basadas en la tierra la que determina el desarrollo manufacturero.

En una segunda etapa o economía abierta, la demanda de exportaciones de productos industriales crece más rápido que la doméstica del sector agropecuario, debido principalmente a la alta elasticidad ingreso de la demanda de productos manufacturados. De esta forma, el crecimiento de las exportaciones, a través del multiplicador del comercio internacional de Harrod, establece la tasa de crecimiento del producto manufacturero para un país particular.

En el segundo capítulo se hace un breve recuento de los principales acontecimientos económicos ocurridos desde inicios del siglo XX hasta la actualidad. La exposición se centra en la importancia que tuvieron el Estado y la industria en el desarrollo económico de México. Se demuestra que se creció de manera ininterrumpida cuando se decidió fomentar la industrialización. Tanto el producto total como el producto por persona se incrementaron y permitieron que México pasara de una nación rural a una semiindustrializada.

Desafortunadamente, se cometieron excesos e ineficiencias, se abusó del proteccionismo del Estado y cuando éste fue incapaz de sostener su gasto, se descubrieron las debilidades inherentes a un modelo de industrialización planificado desde el gobierno. La historia económica mexicana ha dejado muchas lecciones, una de ellas es que se debe buscar un sano equilibrio entre el Estado y el mercado. La protección y el intervencionismo excesivo presentan grandes fallas, así como una estrategia de mercado incompleta.

Este segundo apartado tiene como objetivo central analizar la etapa actual de estancamiento económico. Se exhiben las bajas tasas de crecimiento, tanto del producto total como per cápita, y se aclara que dicho proceso se encuentra altamente correlacionado con la insuficiencia dinámica manufacturera, resultado de la industrialización trunca y las políticas aplicadas durante el MAEM.

Se analiza también el comportamiento del empleo, demostrando que éste no ha crecido lo suficiente como para satisfacer los requerimientos de los poco más de un millón de personas que anualmente se agregan a este mercado. El desempleo ha mermado el nivel de bienestar de las familias mexicanas, convirtiendo en urgente la necesidad de cambiar el actual modelo económico.

Asimismo, se hace un recuento de algunos destacados acontecimientos en la economía mexicana durante el MAEM y se sintetizan las políticas industriales implementadas, si es que así se le puede llamar a las medidas puestas en marcha por el gobierno mexicano durante los últimos veintiocho años. La presentación de la política industrial del MAEM sirve como un insumo para el diseño de una nueva política industrial para el crecimiento y el empleo, la cual se muestra en la parte final de este documento. Adicional a esto, se realiza un resumen de la literatura en torno al estancamiento y se comentan las diferentes explicaciones que se han dado al problema, de las cuales, la mayor parte coincide con la presente investigación.

El segundo apartado termina con un análisis de las principales variables de la manufactura y subsectores, de 1993 al 2008, a partir de los Censos Industriales. También, se describe el comportamiento del número de establecimientos, personal ocupado, remuneraciones, inversión y valor agregado. Aquí se ofrece evidencia preliminar de la primera y segunda leyes de Kaldor.

El tercer capítulo tiene como objetivo general demostrar que el estancamiento económico se asocia al proceso de insuficiencia dinámica de las manufacturas, sector principal que opera bajo condiciones de rendimientos crecientes a escala. Ligados a este gran objetivo se tienen otros cuatro particulares: 1) resumir las principales evidencias en el plano internacional y nacional de las leyes de Kaldor; 2) demostrar el cumplimiento de la primera ley de Kaldor; 3) verificar la existencia de rendimientos crecientes en las manufacturas mexicanas (segunda ley); y 4) verificar la validez de la tercera ley de Kaldor.

A través de una serie de pruebas econométricas, se demuestra la validez de la primera ley de Kaldor para la economía mexicana; es decir, se exhibe que existe una elevada corre-

lación entre la tasa de crecimiento del PIB manufacturero y la tasa de crecimiento del PIB total; aún más, se demuestra que para el periodo que va de 1980 al 2009 el PIB manufacturero es causa Granger del PIB total, un resultado que tiene consecuencias inmediatas en el diseño de política económica.

Las estimaciones econométricas de la segunda ley de Kaldor o ley Verdoorn, permiten afirmar que la productividad laboral manufacturera se ve alentada por el crecimiento del producto, o lo que es lo mismo, que existen rendimientos crecientes a escala en esta clase de actividades. Pero, como se expone, estos son reducidos y por ello no han sido capaces de crear un círculo virtuoso de acumulación en la economía mexicana.

Respecto a la tercera ley de Kaldor, se encontró que, aunque los coeficientes de las variables involucradas tienen el signo correcto, no resultaron estadísticamente significativos, además de mostrar una muy mala bondad de ajuste. No se puede aseverar que una reducción (incremento) en el empleo no manufacturero incrementa (decrementa) la productividad global, ni que un incremento (decremento) del PIB manufacturero incrementa (decrementa) la productividad global.

En resumen, la investigación establece a nivel teórico que el crecimiento del PIB manufacturero es una causa del crecimiento del producto y empleo. A nivel empírico, con datos de la economía mexicana, dicha teoría se comprueba parcialmente; de 1982 a 2010 las bajas tasas de crecimiento económico se correlacionan con la insuficiencia dinámica manufacturera, de hecho, se revela que estadísticamente las manufacturas causan el crecimiento del producto total. Tal resultado es perfectamente congruente con los hallazgos de otros investigadores mexicanos y extranjeros. Las manufacturas son el motor del crecimiento económico, particularmente las que involucran fuertes dosis de conocimiento e innovación. A partir de su importancia, se propone en la parte final una serie de medidas de política que podrían ser consi-

deradas por los tomadores de decisiones para conformar una nueva política industrial que genere crecimiento económico y empleo.

En la parte final del documento no se aspira a presentar un programa completo de política industrial, sino únicamente a colaborar con algunas ideas que se desprenden de una reflexión rigurosa y consistente, basada en un marco teórico y la firme intención de superar con elementos técnicos el estancamiento económico. Debe reconocerse que existen muchos factores que no han sido considerados, pero se espera convencer al lector de que la investigación ha puesto énfasis en el determinante próximo de la paralización económica en México.

CAPÍTULO I

Manufacturas y crecimiento económico. La teoría

...the contention that I intend to examine is that fast rates of economic growth are associated with the fast rate of growth of the 'secondary' sector of the economy –mainly the manufacturing sector.

Kaldor (1966)

1.1 Introducción

l estancamiento económico es una problemática a la que se enfrentan todas las naciones en algún momento de su historia; refiere a una situación en la cual las tasas de crecimiento son insignificantes o incluso negativas durante un determinado periodo de tiempo; cuando esto ocurre, crece por debajo de su nivel potencial y los recursos son subutilizados, lo que hace más difícil escapar de esa situación.

El estancamiento es la pérdida en la capacidad de producción, que se asocia con el desempleo de la fuerza de trabajo, más aún cuando se presentan tasas significativas de crecimiento de la población económicamente activa. Se puede afirmar que estancamiento y desempleo son dos problemas asociados y, por tanto, la explicación de uno ellos facilita el entendimiento del otro.

La economía mexicana vive desde hace ya casi tres décadas un marcado estancamiento, lo que ha agravado la problemática del desempleo y con ello el proceso de atraso relativo. Este estado estacionario puede explicarse usando un marco teórico que pone énfasis en los rendimientos crecientes a escala dinámicos y estáticos propios del sector industrial manufacturero, que resultan de la división del trabajo y la especialización.

En este sentido, se pretende demostrar que un país crecerá rápidamente cuando su sector industrial manufacturero también lo hace. El marco de referencia son las leyes de Kaldor.

La industria como motor impulsor del crecimiento es la hipótesis básica que se sostiene. Esta idea es tan antigua como la historia del pensamiento económico y por ello en la segunda parte de este capítulo se hace un recuento de las principales aportaciones en la materia que precedieron a la perspectiva kaldoriana. La exposición se centra en el teorema de Adam Smith y en las ampliaciones al mismo por parte de Allyn Young.

En la tercera parte se presentan las ideas de cuatro economistas del desarrollo: Rosenstein-Rodan, Nurkse, Myrdal y Hirschman, quienes remarcaron la importancia de la industria en el desenvolvimiento económico, así como su visión del mismo como un proceso de naturaleza circular acumulativa.

En la cuarta parte, que constituye el marco teórico de referencia de la investigación, se expone el modelo kaldoriano que sirve como base de la investigación y se delinean las ecuaciones que en el capítulo tres son estimadas con datos de la economía mexicana.

1.2 Primeras explicaciones del estancamiento

Las causas del estancamiento pueden ser explicadas directamente a través de las teorías macroeconómicas respectivas, o bien, mediante las diversas aportaciones que el pensamiento económico ha hecho desde sus primeros inicios en temas como el progreso, el crecimiento y el desarrollo. El estancamiento tal y como se ha definido, caracterizado por la lentitud en las tasas de crecimiento, representa un obstáculo para el progreso.

Dado lo anterior, entre las primeras explicaciones a la problemática se encuentran las ideas de los mercantilistas de los siglos XVI, XVII y XVIII (principalmente John Locke, Thomas Mun, William Pety y Richard Cantillon), para quienes el *nervus rerum* de la prosperidad nacional consistía en una balanza comercial favorable y una acumulación de moneda metálica.

Aunque no existe entre estos pensadores una teoría del crecimiento o del estancamiento, sus principios doctrinales llevan a concluir que para ellos una economía en crecimiento dependía de una balanza comercial favorable y una fuerte dosis de metales valiosos (Blaug, 2001: 27-29). Sumado a lo anterior, ya consideraban la importancia de la promoción a la *infant industry* mediante el estímulo de las importaciones de materias primas baratas, los aranceles como mecanismo de protección ante las importaciones de productos manufacturados, el fomento de las exportaciones, específicamente de bienes terminados y la insistencia en el crecimiento demográfico para mantener los salarios reducidos.

Como reacción a lo anterior, los fisiócratas franceses, *inter alia* Turgot y Quesnay, rechazaban la idea de la riqueza como acumulación de dinero en un país, ya que para ellos la única fuente de riqueza era la naturaleza, a través de la cual es posible obtener un producto neto o excedente.

Aun más, la distinción sectorial para este reducido grupo de autores era de suma importancia, ya que el agropecuario,

postulaban, era el único sector que produce adiciones netas al ingreso. Para Quesnay, las clases industriales eran "estériles", mientras que para Turgot son "dilapidadoras". En consecuencia, las clases ocupadas en el medio rural eran las únicas productoras.

La plusvalía generada en el sector primario era concebida como un incremento material de los valores de uso, y no del valor de cambio. Sin tener un modelo de crecimiento, dejan implícito que las condiciones para la generación de un producto neto creciente se encuentran en dejar que el orden natural guíe la actividad económica privilegiando las labores vinculadas a la tierra.

Su principal aportación es la elaboración del Tableau economique, que fue el primer intento serio por mostrar el proceso de producción capitalista en su conjunto, para comprender los determinantes del desempeño económico de su época. Las operaciones representadas en el Tableau reflejan el proceso de crear el producto neto (oferta) después de que los costos de los insumos, trabajo y capital han sido descontados. Los ingresos de los agricultores se derivan de la función que ellos desempeñan al asistir a la naturaleza en la generación del producto neto. Teniendo como ayuda las nuevas adiciones y oportunidades de la división del trabajo y la especialización, la percepción de los fisiócratas de la función empresarial de los agricultores implica que las mejoras a las técnicas agrícolas den como resultado rendimientos crecientes. Así el crecimiento de la economía es endógeno al sistema y depende principalmente de si la oferta es usada productivamente (Rima, 2004: 174-175).

1.2.1 Teorema de Smith: división del trabajo, especialización y extensión del mercado

Adam Smith recoge las aportaciones de los autores mercantilistas, pero sobre todo fisiócratas, corrigiéndolas y aumen-

tándolas. Con su pensamiento se creó un cuerpo de ideas que es objeto de reflexión científica permanente y, considerado el padre de la economía, todas las líneas de investigación parten de asuntos tratados por él.

Con relación al tema que nos ocupa, Smith postulaba que el crecimiento en el largo plazo de la riqueza de las naciones, entendida ésta no como un acervo sino como un ingreso producido durante un periodo de tiempo (flujo), está en función del grado de división del trabajo, un concepto que incorporaba el progreso tecnológico.

El libro primero, capítulos I al III, presenta el teorema de la división del trabajo, o de Smith, que en la investigación interesa retomar por su relevancia para entender el progreso o el estancamiento como un proceso circular acumulativo. Él utiliza el famoso ejemplo de la fábrica de alfileres que aparece en la segunda página de su libro (Smith, 1984: 8-9):

... un obrero que no haya sido adiestrado en esa clase de tarea [fabricación de alfileres] (convertida por virtud de la división del trabajo en un oficio nuevo) y que no esté acostumbrado a manejar la maquinaria que en él se utiliza (cuya invención ha derivado, probablemente, de la división del trabajo), por más que trabaje, apenas podría hacer un alfiler al día, y desde luego no podría confeccionar más de veinte... un obrero estira el alambre, otro lo endereza, un tercero lo va cortando en trozos iguales, un cuarto hace la punta, un quinto obrero está ocupado en limar el extremo donde se va a colocar la cabeza: a su vez la confección de la cabeza requiere dos o tres operaciones distintas: fijarla es un trabajo especial, esmaltar los alfileres otro, y todavía es un oficio distinto colocarlos en el papel. En fin, el importante trabajo de hacer un alfiler queda dividido de esta manera en unas dieciocho operaciones distintas, las cuales son desempeñadas en algunas fabricas por otros tantos obreros diferentes, aunque en otras un solo hombre desempeñe a veces dos o tres operaciones... una pequeña fabrica de esta especie que no empleaba más que diez obreros, donde... algunos de ellos tenían a su cargo dos o tres operaciones. Pero a pesar de que eran pobres y no estaban provistos de la maquinaria debida, podían, cuando se esforzaban, hacer entre todos, diariamente, unas doce libras de alfileres. En cada libra había más de cuatro mil alfileres de tamaño mediano. Por consiguiente, estas diez personas podían hacer cada día, en conjunto, más de cuarenta y ocho mil alfileres, cuya cantidad dividida entre diez, correspondería a cuatro mil ochocientas por persona. En cambio si cada uno hubiera trabajado separada e independientemente y ninguno hubiera sido adiestrado en esa clase de tarea... no hubiera podido hacer... ni un solo alfiler al día...

Para Smith la división del trabajo ocasiona en toda actividad un aumento proporcional en las facultades productivas del trabajo y supone que la diversificación de los numerosos empleos y actividades económicas es consecuencia de esa ventaja. Añade que esto es más un rasgo de las regiones desarrolladas, donde se ha alcanzado un nivel elevado de laboriosidad y progreso, donde muchas personas hacen el trabajo que en las regiones de menor desarrollo normalmente lo hace una sola persona. Establece de esta manera una relación positiva entre división del trabajo y progreso económico.

En términos sectoriales, Smith reconoce que el proceso que describió era mucho más un rasgo de la industria que de la agricultura, ya que ésta última (Smith, 1984: 9-10):

... por su propia naturaleza, no admite tantas subdivisiones del trabajo, ni hay división tan completa de sus operaciones como en las manufacturas. Es imposible separar tan completamente la ocupación del ganadero y del labrador, como se separan los oficios del carpintero y del herrero. El hilandero generalmente es una persona distinta del tejedor; pero la persona que ara, siembra, cava y recolecta el grano suele ser la misma... esta imposibilidad de hacer una separación tan completa de los di-

ferentes ramos de labor en la agricultura es quizá la razón de por qué el progreso de las aptitudes productivas del trabajo en dicha ocupación no siempre corren parejas con los adelantos registrados en las manufacturas...

Conforme a lo que se ha mencionado, si el progreso se encuentra asociado al proceso de división del trabajo que se da principalmente en las actividades manufactureras, existe un reconocimiento de la existencia de rendimientos crecientes a escala, lo que significa que es posible aumentar el volumen de la producción en una cantidad mayor al incremento de los insumos.

Esta noción del progreso fundado en los rendimientos crecientes de la actividad manufacturera, es lo que da al teorema de Smith su carácter innovador, algo que sería abandonado por mucho tiempo por parte de la corriente ortodoxa de la ciencia económica y recuperado por Allyn Young, otrora profesor de Kaldor.

En Smith, los rendimientos crecientes se basan en la división del trabajo, tal y como ha quedado expresado en su ejemplo de la fábrica de alfileres, a lo que se agrega que no hay margen para ellos en otros sectores, mucho menos en la agricultura. En efecto, si la tierra es un factor de producción fijo, existirán rendimientos decrecientes en el trabajo, una de las pocas leyes incontrovertibles de la economía (Thirlwall, 2003: 43).

El aumento considerable en la cantidad de productos (crecimiento) que un mismo número de personas puede confeccionar (productividad), como consecuencia de la división del trabajo, tiene su origen en tres factores: 1) la mayor destreza de obreros concentrados plenamente en un sola tarea o lo que se denomina "aprender haciéndolo"; 2) el ahorro de tiempo que normalmente se pierde al pasar de una ocupación a otra, y 3) el estímulo a la invención de un gran número de máquinas que disminuyen el esfuerzo, dejando a un obre-

ro con la posibilidad de hacer la labor de varios (Smith, 1984: 10-11).

Smith concibió la división del trabajo o las ventajas de la especialización como la verdadera base de una economía social, pues de lo contrario cada uno tendría que hacer todo para sí mismo. Y es esta noción la que está en el centro de la visión optimista de Smith sobre el progreso económico como un proceso autogenerativo, en contraste con los economistas clásicos posteriores, como Ricardo y Mill, quienes creían que la economía terminaría en un estado estacionario como consecuencia de los rendimientos decrecientes en la agricultura; y en contraste también con Marx, quien afirmaba que el capitalismo se colapsaría gracias a sus "contradicciones internas" —la reducción de la tasa de beneficios por la competencia entre capitalistas, las fallas de demanda efectiva a medida que el capital sustituye al trabajo y la alienación de los trabajadores (Thirlwall, 2003: 41).

Debe señalarse que Smith también consideraba la existencia de un estado estacionario. De acuerdo con sus planteamientos, en la medida en que transcurre el tiempo y las existencias de capital crecen, las ganancias tienden a disminuir. Su argumento se basaba en la competencia entre los capitalistas (Smith, 1984: 85):

... cuando los capitales de muchos comerciantes ricos se invierten en el mismo negocio, la natural competencia que se hacen entre ellos tiende a reducir su beneficio; y cuando tiene lugar un aumento del capital en las diferentes actividades que se desempeñan en la respectiva sociedad, la misma competencia producirá efectos similares en todos ellos...

Los incrementos en la disponibilidad de capital en la economía provocan que la tasa de salarios aumente, debido a la competencia entre los empresarios por la escasa fuerza laboral. Aunado a ello, se emprenderán primero las inversiones que otorgan mayores ventajas, de lo que se deduce que grandes existencias de capital sólo pueden usarse a una tasa de ganancia más pequeña. Supone que el aumento de capital conduce a disminuciones en la tasa de beneficios, por la mayor competencia entre capitalistas.

Para Smith el descenso en la tasa de beneficio como consecuencia de la acumulación sostenida de capital conduciría al estado estacionario, descrito por él como (Smith, 1984: 92-93):

... los salarios del trabajo y los beneficios del capital serán probablemente muy bajos en un país que haya adquirido todo aquel cúmulo de riquezas a que se hacía acreedor por la naturaleza de su suelo y de su clima, y por su situación respecto a otros países; semejante nación, si bien no puede hacer ya más progresos, tampoco puede venir a menos. En una nación completamente poblada en proporción a lo que su territorio puede mantener o su capital ocupar, la competencia para conseguir un empleo sería tan grande que bajarían los salarios hasta un grado que apenas serían suficientes para mantener el número de trabajadores, y como el país está completamente poblado su número no podría aumentar más. En un país ricamente provisto de fondos, en proporción a todos los negocios que puede llevarse a efecto, se empleará en cada una de las ramas una cantidad tan grande de capital como lo consienta la naturaleza y extensión del comercio. La competencia sería máxima, por doquier, y como consecuencia, el beneficio corriente lo más bajo posible...

Ahora bien, si la división del trabajo es un determinante clave del progreso, entonces ¿qué es lo que la motiva? Smith en el capítulo II del libro primero sugiere que ésta no surge de la sabiduría humana que prevé y se propone alcanzar aquella general opulencia que de ella se deriva. Es la consecuencia gradual, necesaria y lenta, de la propensión humana a cambiar y negociar un objeto por otro (Smith, 1984: 16):

... el hombre reclama en la mayor parte de las circunstancias la ayuda de sus semejantes y en vano puede esperarla sólo de su benevolencia. La conseguirá con mayor seguridad interesando en su favor el egoísmo de los otros y haciéndoles ver que es ventajoso para ellos hacer lo que les pide. Quien propone a otro un trato le está haciendo una de esas proposiciones. Dame lo que necesitas y tendrás lo que deseas, es el sentido de cualquier clase de oferta, y así obtenemos de los demás la mayor parte de los servicios que necesitamos... la inclinación a la permuta es la causa originaria de la división del trabajo...

Aclarados los orígenes de la división del trabajo, en el libro primero capítulo III, señala que "... así como la facultad de cambiar motiva la división del trabajo, la amplitud de esta división se halla limitada por la extensión de aquella facultad o, dicho en otras palabras, por la extensión del mercado..." (Smith, 1984: 20).

La especialización está limitada por el volumen de producción que puede canalizarse a un mercado. No tiene ningún sentido instalar maquinaria sofisticada para trabajar en los diferentes procesos que comprende la producción de un alfiler si sólo se demandan unos cuantos alfileres. Los trabajadores también pueden producir individualmente cada alfiler. "... cuando [el mercado] es muy pequeño, nadie se anima a dedicarse por entero a una ocupación, por falta de capacidad para cambiar el sobrante de su producto, en exceso del propio consumo, por la parte que necesita de los resultados de la labor de otros..." (Smith, 1984: 20). Pero si el mercado es grande, las economías de escala son posibles.

La extensión del mercado, sin embargo, depende a su vez de la división del trabajo, porque ésta determina el nivel de productividad, el ingreso per cápita y el poder de compra. Generándose un proceso circular e interdependiente. La división del trabajo depende de la extensión del mercado, pero la extensión del mercado depende a su vez de la división del trabajo (Thirlwall, 2003: 42-43).

Obviamente, si el progreso está limitado por la extensión del mercado, llegará un momento en el que la dimensiones geográficas de las naciones provoquen una situación de estancamiento, en la que la única salida sean las exportaciones de los excedentes del consumo interno, es decir representan un escape para aquellas mercancías que de otra forma no podrían venderse. Existe un límite en cuanto a lo que las poblaciones locales pueden consumir de los productos que producen, la sobrevivencia humana reclama una serie de productos que muchas veces ya no resulta posible satisfacerlos localmente, el intercambio es un rasgo natural del comportamiento humano (Thirlwall, 2003: 43).

En conclusión, Smith propone un teorema que forma la base de las modernas teorías del crecimiento y el desarrollo basado en la idea de los rendimientos crecientes. La división del trabajo que surge como una consecuencia de la propensión humana a la permuta es la causa del progreso económico en una región. Pero además, dicha división del trabajo se halla limitada por la extensión del mercado, ya que nadie está dispuesto a especializarse si no existe un número lo suficientemente grande de personas con las cuales intercambiar su excedente de producto. Aún más, la extensión del mercado se halla limitada por la división del trabajo, ya que determina la productividad, el ingreso per cápita y el poder de compra.

Los rendimientos crecientes que permiten el sostenimiento de este proceso circular acumulativo virtuoso implican que la relación de producto a insumos se incremente conforme crece el tamaño del mercado debido a la extensión en la especialización de los insumos. De aquí que cualquier incremento en las cantidades de insumos genere un aumento mayor en el producto. En consecuencia, los rendimientos de toda la escala de la economía se magnifican.

1.2.2 Rendimientos crecientes y progreso económico en Young

Después de Adam Smith, quedó marginada la visión del crecimiento como un proceso progresivo y acumulativo basado en la división del trabajo y los rendimientos manufactureros, hasta que Allyn Young (1928) recuperó estas ideas para explicar el progreso económico.

Young retoma el teorema de Smith por considerarlo una de las generalizaciones más fructíferas de la ciencia económica, pero le agrega el tema de los métodos de producción indirecta y la división del trabajo entre industrias. Estas economías, en su opinión, junto a las de gran escala de operación y la producción en masa, consiguen la generación de rendimientos y con ello la posibilidad de crecer.

Para él, Smith perdió de vista el punto principal cuando sugirió que la división del trabajo conduce a invenciones porque los trabajadores se involucran en operaciones especializadas rutinarias que les permiten llegar a mejores resultados, ya que dicha es transformada en una sucesión de procesos más simples, algunos de los cuales llevan al uso de maquinaria. Con ello existe una posterior división del trabajo que a su vez produce una clase de economías que dependen de la extensión del mercado.

Esto lleva a señalar dos puntos que en su opinión están entrelazados, pero que muchas veces se olvidan: el primero es que las economías principales, las cuales se manifiestan ellas mismas en rendimientos crecientes, son las capitalistas o métodos indirectos de producción. Estas economías son idénticas a las de la división del trabajo, en sus más importantes formas modernas, y están presentes en la industria individual. El segundo punto es que las economías de métodos indirectos de producción, incluso más que las de otras formas de la división del trabajo, dependen de la extensión

del mercado y esto es lo que discute bajo el encabezado de rendimientos crecientes (Young, 1928: 530-531).

Aclara que, tomando las dotaciones económicas como dadas, el factor más importante en la determinación de la efectividad de la industria parece ser el tamaño de mercado. ¿Pero qué constituye un mercado grande? No es el área o la población solamente, es la capacidad para absorber una gran cantidad anual de productos. El poder para comprar depende de la suficiencia para producir. El tamaño de mercado está delimitado y definido por el volumen de producción.

Modificado entonces a la luz de esta amplia concepción del mercado, el teorema de Smith significa que la división del trabajo depende en gran medida de la división del trabajo, esto es más que una mera tautología (Young, 1928: 532-533):

...every important advance in the organization of production, regardless of whether it is based upon anything which, in a narrow or technical sense, would be called a new "invention," or involves a fresh application of the fruits of scientific progress to industry, alters the conditions of industrial activity and initiates responses elsewhere in the industrial structure which in turn have a further unsettling effect. Thus change becomes progressive and propagates itself in a cumulative way...

La tasa a la cual una industria crece está condicionada por las tasas a las que otras crecen, pero dado que las elasticidades de demanda y oferta serán diferentes para cada producto, algunas industrias crecerán más rápido que otras. Incluso con una población estacionaria y la ausencia de nuevos descubrimientos en la ciencia pura o aplicada no hay límites al proceso de expansión excepto los límites más allá de los cuales la demanda no es elástica y los rendimientos no son crecientes (Young, 1928: 534).

En Young, el progreso económico obedece a los rendimientos crecientes presentes en las manufacturas, los cuales son causados por la división del trabajo, la que se manifiesta en incrementos en la tasa capital/trabajo, aumentos en el uso de equipo de capital más especializado e incrementos en la especialización de la producción dentro de la empresa y a través de las industrias.

Las causas de la división del trabajo son, además, efectos de la expansión del tamaño de mercado (producto total). Este crecimiento favorece las indivisibilidades en el empleo de equipo de capital y permite acrecentar la especialización a través de las industrias, además reduce el precio real de los bienes intermedios y los insumos de capital debido a que su producción está sujeta a rendimientos crecientes a escala por una mayor división del trabajo. De esta forma, las ganancias en la producción de estos insumos reduce los costos para otras industrias reforzando los efectos del cambio tecnológico, el cual está relacionado positivamente con la tasa de crecimiento del producto y se transmite principalmente a través de la inversión de capital.

La detonación del mercado, igual que en Smith, obedece a las ganancias en productividad, una expansión continua del producto sucede cuando existe una demanda elástica por los bienes producidos bajo condiciones de rendimientos crecientes. La interacción de rendimientos tanto crecientes como del producto total crea un círculo virtuoso de causación acumulativa. En Young, como en Smith, las manufacturas son el motor del crecimiento como resultado de los rendimientos crecientes que hacen que la oferta y demanda de sus productos sea elástica con respecto al precio y al ingreso.

Las principales variaciones que Young realiza al teorema de Smith son las siguientes: a) toma en cuenta las operaciones interindustriales vistas como un todo interrelacionado, b) considera los métodos de producción indirecta o capitalistas (tasa capital/trabajo), c) reinterpreta el nexo división del trabajo-extensión del mercado, y d) demuestra que las técnicas de producción están determinadas por la escala de producción mas que por el precio de los insumos utilizados en la producción.

En la opinión de McCombie (2002: 67), una de las mayores implicaciones en Young respecto de la división del trabajo es que el grado de métodos indirectos de producción (la relación capital-trabajo) no está determinado básicamente por la tasa de salarios a la renta del capital (como en el esquema neoclásico), sino por la escala de la producción. Esto no quiere decir que no hay sustitución de trabajo por capital conforme los precios de los factores varían, sino que las técnicas de producción están establecidas principalmente por la escala de la producción. Bajo rendimientos constantes a escala, sin embargo, y con los supuestos neoclásicos usuales, la tasa capital-trabajo de la empresa está únicamente sujeta a la tasa salario a precio de renta del capital.

1.3 Industria, trampas de subdesarrollo y causación acumulativa

El teorema de Smith, reforzado por las aportaciones de Young, es uno de los instrumentos analíticos más relevantes para entender la naturaleza del crecimiento; no obstante, se mantuvo en el olvido por mucho tiempo, hasta que economistas como Gunnar Myrdal (1957), Albert Hirschman (1958), Ragnar Nurkse (1953) y Paul Rosenstein-Rodan (1943) establecieron teorías del proceso de desarrollo que compartían un énfasis en la industria y la creación de procesos circulares que se refuerzan en el tiempo como consecuencia de la existencia de rendimientos crecientes a escala y externalidades.¹

A partir de finales de los treinta, y principios de la década de los cuarenta, se generaron dos campos disciplinarios dentro de la economía que abordan de forma diferente los temas del progreso. Una es la teoría del crecimiento, que se concentra en el análisis de estados de equilibrio, donde todas las variables, o casi todas, se expanden al mismo ritmo; la otra es la economía del desarrollo,

1.3.1 La salida del estancamiento económico por medio de la industrialización

Paul Rosenstein-Rodan (1943), en un artículo clásico de la economía del desarrollo propone industrializar las áreas deprimidas a través de la movilización de capital hacia esas zonas, porque considera que en dicho sector existen rendimientos a escala agregados que pueden ser de carácter interno o externo a las empresas de tipo industrial.

En el primer caso, la tecnología presenta rendimientos crecientes a escala como resultado de la existencia de costos fijos, las relaciones área-volumen y las discontinuidades técnicas. En Rosenstein-Rodan, la presencia de estas economías de escala a nivel de planta era vista como una característica de los métodos de producción en masa.

En el segundo caso, aun y cuando la empresa operara individualmente con una tecnología de rendimientos constantes a escala, los rendimientos a escala pueden ser crecientes al nivel de un sector o de la economía como un todo, si las actividades de las empresas afectan colectivamente las condiciones de producción de un gran número de ellas. En Rosenstein-Rodan estos efectos surgen de actividades como la capacitación industrial (Ros, 2004: 134-135).

que se centra en los estados de desequilibrio y en procesos de transición de un equilibrio a otro. Y aún más, al interior de la teoría del crecimiento, a partir de los resultados del modelo de Harrod (1939)–Domar (1946), se generan dos posiciones para resolver el debate en torno la divergencia entre la tasa natural y garantizada de crecimiento. Ausentes en este debate, los economistas del desarrollo consideran el rol que juegan los rendimientos crecientes a escala, las externalidades tecnológicas y pecuniarias y la existencia de una oferta de trabajo elástica, mucho antes que los actuales modelos de crecimiento endógeno. Quizá la principal diferencia entre ambos enfoques es que la teoría del crecimiento tendía a adoptar un alto nivel de agregación, con frecuencia, una economía con un sector que producía un bien. La persistencia del dualismo (tecnológico y de organización) en los países subdesarrollados llevó a la economía del desarrollo a operar en un nivel de agregación menor, con al menos dos sectores que usaban diferentes tecnologías (Ros, 2004: 16).

En el trabajo citado, establece al menos tres principios fundamentales que interesan. El primero de ellos es que la industrialización de las regiones deprimidas la plantea como una meta para producir un equilibrio estructural en la economía mundial, creando empleos productivos para los excesos de población rural. En su opinión, el crecimiento de las naciones no es un juego de suma cero, de hecho plantea que las desarrolladas se ven favorecidas por las mejoras de ingreso real en las de menor desarrollo relativo.

De acuerdo con Rosenstein-Rodan (1943), en las naciones subdesarrolladas existen al menos dos formas de generar un efecto de salida de los círculos viciosos que las aquejan, la primera sería a través de una movilización de la mano de obra hacia aquellas naciones que tienen capital (emigración) o bien el capital debe movilizarse hacia el trabajo (industrialización). Desde el punto de vista de maximizar el ingreso mundial, la diferencia entre estas dos vías radica en los costos de transporte, los cuales normalmente resultan despreciables. Pero dado que la emigración genera demasiadas dificultades en las naciones de inmigración (y en las de emigración) no se puede considerar factible en gran escala, por lo que sólo es viable la industrialización.

Como parte del segundo principio, retoma el teorema de Smith y las aportaciones de Young para indicar que un tamaño óptimo de las empresas sólo se puede alcanzar cuando la nación a industrializar es extensa. Con ello sugiere que el progreso generado a partir de la intervención pública sólo tendrá éxito en la medida que la extensión del mercado sea lo suficientemente grande, medida no en términos de poder adquisitivo como lo hace Young, sino en función del espacio físico y/o el número de personas.

Establece entonces un proceso de causación circular en el que es imposible industrializar y, por tanto, alcanzar el progreso si no se reúnen las condiciones de un mercado lo suficientemente grande que permita a las empresas industriales alcanzar un tamaño óptimo de producción; los límites al crecimiento se encuentran determinados por la demanda.

Un tercer principio fundamental que señala es el de la complementariedad, ya que ésta permite reducir el riesgo de no poder vender y, puesto que el riesgo puede considerarse como un costo, baja los costos. En este sentido, es un caso especial de "economías externas". Además, sugiere que a partir un sistema de producción industrial diversificado surgirán otros dos tipos de economías externas (Rosenstein-Rodan, 1943: 206): en primer lugar, las economías marshallianas externas a una empresa dentro de una industria en crecimiento, y en segundo, las economías externas a la industria generadas por el crecimiento de otras industrias.

El pensamiento de Rosenstein-Rodan representa un rompimiento total con las ideas del equilibrio y la creencia en la eficiencia de los mecanismos de mercado, ya que consideraba que el análisis del proceso de crecimiento en desequilibrio es fundamental para entender los problemas del desarrollo económico. Para Rosenstein-Rodan (1984: 209):

... the market mechanism does not realize the 'optimum' either in one nation or between nations, because it relies on such unrealistic assumptions as linear homogeneous production functions, no increasing returns or economies of scale or of agglomeration, and no phenomenon of minimum quantum or threshold... nothing in theology or technology ordains that God created the world convex downwards...

De hecho, en los países subdesarrollados, para Rosenstein-Rodan, las imperfecciones del mercado son mayores, porque generan una variedad de fallas de coordinación que son el riesgo y la divergencia entre el producto neto marginal social y privado. El riesgo o incertidumbre se refleja en los débiles incentivos que tienen los empresarios privados para

llevar a cabo proyectos de gran envergadura, lo que resulta en estancamiento, ya que de no darse la inversión en tal clase de proyectos, no será posible explotar las complementariedades en la demanda y cristalizar los efectos positivos de los rendimientos crecientes. Una fuente adicional de riesgo o incertidumbre es la incapacidad que tiene cualquier empresario para analizar y planear la información necesaria para la inversión en proyectos de gran escala a lo largo de varias industrias (Rosenstein-Rodan, 1943: 206):

... if the industrialization of international depressed areas were to rely entirely on the normal incentive of private entrepreneurs, the process would not only be much slower, the rate of investment smaller and (consequently) the national income lower, but whole economic structure of the region would be different. Investment would be distributed in different proportions between different industries; the final equilibrium would be below the optimum which a large [Central Agency] could achieve...

De acuerdo con su teoría, los problemas de desempleo y bajo ingreso per cápita sólo se pueden corregir a través de la intervención del Estado, promoviendo un proceso de industrialización que explote las economías externas y las complementariedades en la demanda.

1.3.2 Problemas para la formación de capital y trampas del subdesarrollo

Para Ragnar Nurkse (1952, 1953) el problema del desarrollo está asociado con una insuficiencia de capital en relación a la población y los recursos naturales. La escasez de capital la vincula con el estancamiento económico, ya que en una sociedad en la cual no se cuenta con un acervo suficiente de capital resulta imposible incrementar la producción. Aun-

que reconoce que el capital es sólo una condición necesaria, pero no suficiente, para entender el estado de subdesarrollo, además, precisa, se deben tomar en cuenta las actitudes sociales, condiciones políticas y la dotación de capital humano.

Afirma que las economías subdesarrolladas se encuentran atrapadas en círculos viciosos de pobreza, los cuales (Nurkse, 1953: 4):

... implies a circular constellation of forces tending to act and react upon another in such a way as to keep a poor country in a state of poverty. Particular instances of such circular constellations are not difficult to imagine. For example, a poor man may not have enough to eat; being under-fed, his health may be weak; being physically weak, his working capacity is low, which means that he is poor, which in turn means that he will not have enough to eat; and so on. A situation of this sort; relating to a country as a whole, can be summed up in trite proposition: 'a country is poor because it is poor'...

Agrega Nurkse (1953) que el más importante de todos los círculos viciosos es el referente a la imposibilidad de acumular capital en los países de menor desarrollo. Dado que la oferta de capital está gobernada por la habilidad o el deseo por ahorrar y la demanda está conducida por los incentivos a invertir, se tiene una relación circular que existe en ambos lados del problema de formación de capital en las áreas deprimidas del mundo.

No obstante, afirma que en los países de menor desarrollo resultaría obvio que tienen una gran demanda de capital, existen restricciones en términos de los incentivos privados para adoptar métodos capitalistas en los procesos de producción, lo que tiene su origen en el limitado tamaño del mercado doméstico en las primeras etapas del desarrollo económico.

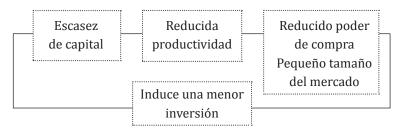
En general, reconoce el valor e importancia del teorema de Smith para explicar la forma en la que inversión inducida está limitada por el tamaño del mercado. El punto es simple, en los países de menor desarrollo el uso de equipo de capital en la producción de bienes y servicios para el mercado doméstico está inhibido por el pequeño mercado, por la falta de poder de compra, no en términos monetarios, sino reales. Indica que si fuera un problema de oferta de dinero, se resolvería con una expansión del mismo, pero dado que esto no es así, las expansiones monetarias únicamente producen una inflación de los precios.

El tamaño de mercado, determinante fundamental por el lado de la demanda de la formación de capital y, por tanto, de la tasa de crecimiento de la producción de bienes y servicios, está determinado por la productividad. Lejos de estar en función de la población, como normalmente se asume, el tamaño de mercado puede incrementarse aún con una población estacionaria si sube la eficiencia de la productividad.

Lo que Nurkse propone es la existencia de la ley de Say, donde la producción crea su propia demanda, y el tamaño del mercado depende del volumen de producción. El mercado únicamente puede ser extendido por incrementos en la productividad. Según él, tener capacidad para comprar significa capacidad para producir (Nurkse, 1953: 8-9).

Si esto es así, entonces en las regiones de menor desarrollo se tiene un círculo perverso, ya que la productividad —definida como el producto per cápita por hora— depende en su mayor parte, no en su totalidad, del grado en el cual el capital es empleado en la producción. Esto es, del uso de maquinaria y otros equipos. Se tiene que la productividad es una función de la intensidad de capital en la producción, pero para cualquier empresario individual el uso de capital está inhibido por el pequeño tamaño de mercado (Nurkse, 1952: 571).

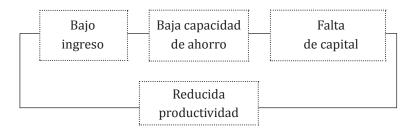
Este es uno de los aspectos que mantienen a las economías atrapadas en un círculo de pobreza (Nurkse, 1953: 10):


... we perceive a constellation of circumstances tending to preserve any backward economy in a stationary condition, in a state of 'underdevelopment equilibrium' somewhat analogous... to the 'underemployment equilibrium,' the possibility of which, in advanced industrial countries, was impressed on us by Keynes. Economic progress is not a spontaneous or automatic affair. On the contrary, it is evident that there are automatic forces within the system tending to keep it moored to a given level...

Añade que este círculo no es inquebrantable y que una vez que se rompe se puede iniciar uno de causalidad acumulativa virtuosa que lleve a las economías a un estado de desarrollo. Las dificultades del mercado pueden aliviarse por medio de una expansión dinámica del mismo a través de la inversión llevada a cabo en diversas industrias.

Dado que la tasa a la que crece una industria está inevitablemente condicionada a la de otras industrias, algunas crecerán más que otras, lo que depende de las elasticidades de demanda y oferta que varían para los diferentes productos. De esta forma, la aplicación de capital sobre un amplio rango de actividades permite incrementar el nivel de eficiencia general de la economía y con ello el tamaño de mercado. Existe en él un reconocimiento a las economías externas a la firma individual y, por supuesto, a los rendimientos crecientes en el curso del progreso económico (Nurkse, 1953: 14-15). De hecho, afirma que las economías externas en el sentido de mercado pueden crear una discrepancia entre la productividad marginal privada y social del capital.

En concreto, existen deficiencias en los países de bajo ingreso por el lado de la demanda en la formación de capital, las cuales corresponden básicamente al nivel de la empresa individual y no para la economía como un todo. En la figura 1.1 se expone el círculo vicioso que genera trampas del subdesarrollo por el lado de la demanda.


Figura 1.1 Círculo vicioso por el lado de la demanda

Fuente: elaboración propia con base en Nurkse, 1953.

Por el lado de la oferta, los problemas, según Nurkse, son todavía más serios y para su análisis distingue entre países sobrepoblados y subpoblados. Para nuestros fines interesa señalar que por el lado de la oferta el conflicto de la formación de capital corre de a) un bajo nivel de ingreso a b) una pequeña capacidad para ahorrar, y de aquí c) a una falta de capital, lo que conduce a d) baja productividad y de ahí de nuevo a un bajo ingreso real por persona (Nurkse, 1953: 57). En la figura 1.2 se ilustra este proceso.

Figura 1.2 Círculo vicioso por el lado de la oferta

Fuente: elaboración propia con base a Nurkse, 1953.

Por otra parte, debe mencionarse que al igual que Rosenstein-Rodan, Nurkse estaba de acuerdo con la idea del "crecimiento balanceado" y considera dos razones adicionales para la coordinación de las decisiones de inversión. La primera es que se tienen que crear los incentivos y amenazas para que las inversiones privadas extranjeras sean canalizadas a actividades industriales manufactureras, ya que es frecuente en los países de menor desarrollo que éstas se concentren en materias primas, las cuales no contribuyen a un crecimiento armonioso, además de estar sujetas a la competencia de bienes sintéticos, tener baja elasticidad precio de la demanda y fluctuantes términos de intercambio² (Nurkse, 1952: 575).

La segunda razón es que se debe solucionar el problema de la insuficiencia de la tasa de ahorros. La tasa garantizada de ahorro e inversión en los países estancados se encuentra por encima de la tasa efectiva. Se requiere administrar una política que favorezca la formación de capital, incrementando la proporción de ingresos dirigidos al ahorro, reduciendo el "efecto demostración" o la tentación de copiar patrones de vida de naciones avanzadas (Nurkse, 1952: 578).

El "crecimiento balanceado" para la salida del atraso, tanto en Rosenstein-Rodan como en Nurkse, tiene distintos significados, algunos de los cuales incluyen (Toner, 1991: 76-77):

- Balance entre oferta y demanda.
- Balance de la producción con cambios en las elasticidades ingreso de la demanda.

² En relación a este tópico merecen especial atención las ideas de Prebisch (1959), para quien las exportaciones de productos primarios en los países de América Latina generaban una pérdida de ingreso como resultado del deterioro de los términos de intercambio. De su análisis se concluía que la sustitución de importaciones estimulada por una protección moderada y selectiva podía generar efectos deseables sobre el crecimiento económico. En su modelo, la industrialización de las naciones de menor desarrollo corrige el deterioro de los términos de intercambio, al generarse productos que tienen una alta elasticidad ingreso de la demanda. La industrialización es la fuerza que fomenta el progreso tecnológico, crea empleos y cambios en la estructura de la producción, en respuesta a la alta elasticidad de demanda de los productos manufacturados. Producción industrial e incremento en la productividad del sector primario son complementarios. Entre más intensa es la última, mayor será la necesidad de industrialización.

- Un balance o cantidad de demanda suficiente para superar las indivisibilidades en el empleo de capital.
- Un balance en la producción de materias primas para explotar las complementariedades en la demanda que pueden existir entre ellas.
- Un balance del producto y de la composición sectorial de ese producto (agricultura, minería, manufactura, servicios), con la fuerza de trabajo para crear el pleno empleo.

El reto central del "crecimiento balanceado" es identificar los medios para iniciar el proceso de industrialización en una región estancada, no el fin o la meta. Estos autores no consideraron qué sucedía después de iniciado el proceso de industrialización; además, abandonaron en su análisis la figura del sector de bienes de capital. A diferencia de ellos, Hirschman le daría un peso relevante al sector de bienes de capital y a los insumos intermedios en su explicación de la estrategia del desarrollo económico.

1.3.3 El principio de la causación circular acumulativa

Ya se ha establecido en el documento la existencia de un principio de causación circular acumulativa, pero sería hasta Myrdal (1957) que dicho proceso se formalizaría expresamente. Las innovaciones del trabajo de Myrdal respecto a otros autores, principalmente Rosenstein-Rodan y Hirschman, son tres: la primera es que su teoría de la causación acumulativa puede ser aplicable tanto a naciones desarrolladas como subdesarrolladas, la segunda es que enfatizó el efecto del comercio, flujos de capital y migración entre naciones ricas y pobres como una causa activa del subdesarrollo. Myrdal puso especial énfasis en el desarrollo del subdesarrollo a través del libre comercio. La tercera innovación es que da la misma importancia a los factores económicos que a los no

económicos (influencias sociales, culturales y políticas) en la explicación del crecimiento y el estancamiento (Toner, 1999: 105).

Myrdal es particularmente crítico de los economistas que se adhieren al supuesto de equilibrio estable. En concreto, para el autor esta noción es normalmente una analogía falsa que no se debe utilizar para construir una teoría que explique los cambios que se operan en un sistema social. La falla de aplicar a la realidad social este supuesto radica en la idea misma de que un proceso social sigue una dirección dada hacia una posición que, en uno u otro sentido, puede describir-se como un estado de equilibrio entre fuerzas.

Aunque reconoce que puede suceder que se presenten cambios exógenos que tengan la dirección y fuerzas para detener el sistema. Sin embargo, la posición de las fuerzas equilibradoras que de esta forma se establece no es el resultado del juego de las fuerzas del sistema. Aunado a que es inestable, cualquier cambio exógeno da inicio de nuevo a un proceso acumulativo que se alejará de esta posición en dirección del nuevo cambio.

El principio de causación circular acumulativa por él propuesto es un método alternativo al de equilibrio estático, sin duda el trabajo de Myrdal estableció los fundamentos de las críticas realizadas por Kaldor al pensamiento neoclásico y le permitiría formular su propio enfoque basado en los "hechos estilizados".

El modelo de causación circular ha sido sintetizado por Toner (1999) en siete proposiciones:

• Un cambio en un sistema económico y social induce posteriores autosoportes o refuerza los cambios.

Para Myrdal, en los casos normales no existe una tendencia hacia la autoestabilización en el sistema social, un cambio no produce fuerzas compensadoras, en su lugar promueve cambios que mueven el sistema en la misma dirección del cambio inicial pero más adelante. Es por ello que la causación

circular de un proceso social tiende a convertirse en acumulativa y ganar velocidad a una tasa acelerada. De acuerdo con esto, si el proceso acumulativo no está regulado incrementará las desigualdades (Myrdal, 1957: 13)

• La tasa de cambio temporal de un sistema y las variables que le constituyen no son constantes.

El tiempo es un elemento de importancia suprema, los efectos de un *shock* sobre las diferentes variables del sistema se dispersan de forma diferente a lo largo de los ejes del tiempo. Un decremento en el empleo, por ejemplo, casi inmediatamente reducirá los niveles de vida, pero un cambio en los niveles de educación es logrado con mayor lentitud y por ello sus efectos sobre otros factores tardarán en presentarse, como consecuencia existe un rezago en todo el proceso acumulativo (Myrdal, 1957: 18).

 Tanto los factores sociales como económicos son responsables del desarrollo y subdesarrollo y estos factores no pueden ser arbitrariamente separados.

Es de poco valor observar el comportamiento de un factor predominante, peor aún es enfocarse únicamente en aquellos de carácter económico, ya que esto hace difícil llegar a conclusiones adecuadas, debido a que todas las cosas se encuentran interconectadas de manera circular. El hecho de que la teoría económica haya dejado fuera los llamados factores no económicos es uno de sus mayores defectos porque estos son los principales vehículos del proceso acumulativo de cambio económico (Myrdal, 1957: 30).

• Las fuerzas circulares y acumulativas pueden ser conscientemente controladas

El dejar sin control las fuerzas del mercado acelera la tendencia simultánea hacia el desarrollo y el subdesarrollo dentro de una nación y entre las naciones. El enfoque circular y acumulativo suministra argumentos para la planeación estatal del desarrollo económico en una región subdesarrollada así como para interferencias estatales de gran escala. En los países pobres se hace necesaria una política de desarrollo que evite la prolongación del estancamiento, consecuencia natural de la actuación de las fuerzas del mercado (Myrdal, 1957: 56).

- La teoría de la causación circular y acumulativa aplica igualmente a la explicación del crecimiento económico como al estancamiento y al subdesarrollo de las naciones como al desarrollo (Myrdal, 1957: 20).
- Los procesos circulares y acumulativos son causados principalmente por la industrialización.

Las diferencias en el desarrollo de la industria manufacturera dentro de las naciones es la causa de las diferencias en los ingresos per cápita a través de las mismas. Para Myrdal, la industrialización es la fuerza dinámica del desarrollo, de las diferencias entre el "norte" y el "sur". Argumenta a favor de políticas que promuevan la industria manufacturera, ya que de esta forma es posible rectificar una economía desbalanceada y brindar un *momentum* dinámico (Myrdal, 1957: 29).

• Las tasas de crecimiento o estancamiento pueden ser autolimitantes.

Los procesos circulares y acumulativos normalmente generan fuerzas que contrarrestan los cambios, lo cual puede limitar o incluso revertir la dirección del cambio inicial. Existen límites endógenos a la operación de círculos viciosos o virtuosos. Myrdal identificó claramente dos tipos de fuerzas: a) backwash effects o cambios adversos que pueden ser consecuencia del comercio, migración y movimiento de capitales y b) spread effects o mecanismos impulsores de una región, entre los que se encuentran, por ejemplo, la transferencia de tecnología (Fujita, 2007: 278-279).

En cuanto a los mecanismos a través de los cuales opera el proceso de causación circular acumulativa, estos no fueron explícitamente analizados por Myrdal, ya que, en su opinión, no representan un rompimiento severo con la economía convencional. Explica que únicamente se deben reformular y ajustar de acuerdo con los supuestos. Existe en él un reconocimiento al trabajo de los economistas que le precedieron, en especial de los autores clásicos. Aprovechando el trabajo de Toner (1999), se identifican los mecanismos de la causación circular y acumulativa.

El primer grupo de mecanismos que se toman en cuenta para el crecimiento y/o estancamiento son los rendimientos crecientes y las economías externas. Ambos son generados a través de la interrelación de cantidades económicas: demanda, poder de ganancia, ingresos, inversión y producción. Myrdal establece una forma de mecanismo multiplicadoracelerador que permite que una región que cuenta con una tecnología de rendimientos crecientes, una vez que toma una ventaja, tenderá a volverla progresiva (Myrdal, 1957: 26).

El crecimiento del mercado crea economías crecientes internas y externas, que abarcan el valor de mercados en expansión, el valor del incremento en el número de personas capacitadas y el valor productivo de altos niveles de consumo, así como altos estándares de salud, educación y cultura (Myrdal, 1957: 87-87). Al igual que Rosenstein-Rodan, Nurkse y Hirschman, considera necesario generar un plan de acción para el desarrollo que aproveche las economías externas, ya que estas no pueden ser explotadas adecuadamente por el mercado, siendo esenciales en el proceso de crecimiento económico.

Un segundo conjunto de mecanismos actúa no únicamente para reforzar la relación circular entre crecimiento en ingreso e inversión, ellos son los medios a través de los cuales los impulsos conducen al aceleramiento o estancamiento y se trasmiten regional, nacional o internacionalmente. Estos son el comercio, el movimiento de capitales y la migración.

Para Myrdal (1957: 27-28), el comercio entre naciones pobres y ricas puede producir inequidades o ampliar la brecha de ingreso per cápita. La alta productividad y base tecnológica de las manufacturas de una nación avanzada conducen a

la destrucción de las artesanías tradicionales en las naciones pobres e inhibe el desarrollo de todas las manufacturas.

Estos argumentos se basan en el rechazo de la teoría neoclásica del comercio internacional. Como se ya ha mencionado, para Myrdal la noción de equilibrio estable es inadecuada para el análisis del desarrollo, por ello considera totalmente inapropiados los supuestos de Heckscher-Ohlin-Samuelson.

La poca competitividad de las manufacturas domésticas apuntala la tendencia de las naciones pobres a especializarse en materias primas, las cuales normalmente tienen una elasticidad menor a la unidad con respecto al precio. Tal especialización no promueve el desarrollo económico, porque no se activa la industria manufacturera de base. La generación de empresas que trabajan en enclave (maquiladoras) tiene en Myrdal un efecto empobrecedor, ya que no esparcen sus beneficios territorialmente, no se encadenan productivamente, algo que sería señalado también por Hirschman.

La ausencia de efectos de propagación además de incrementar las desigualdades internacionales amplia las diferencias interregionales dentro de las naciones pobres. Los efectos del comercio de bienes y servicios son reforzados por el movimiento de capitales. Los flujos de recursos de las naciones ricas a las pobres están dirigidos principalmente a enclaves comerciales dedicados a la exportación, existiendo, por tanto, una salida de capital desde las naciones pobres, debido a la repatriación de ganancias y la presencia de ahorradores domésticos que invierten en naciones ricas (Myrdal 1957: 53).

Para finalizar, la migración o las barreras a la movilidad de seres humanos en gran escala desde las naciones pobres a las ricas, significa que los flujos de población no pueden ser usados como factor de ajuste económico internacional entre los países desarrollados y subdesarrollados (Myrdal, 1957: 54). Cuando esos flujos ocurren son de mano de obra joven y

calificada lo que termina por fracturar aún más las perspectivas del desarrollo y preservan el estancamiento.

Tomando como base lo que se ha expuesto, es posible establecer que el estancamiento de una nación puede ser consecuencia de la expansión de otra nación. Ya que los movimientos de mano de obra, capital y de bienes y servicios no contrarrestan por sí mismos la tendencia natural hacia la desigualdad. Por sí mismos, la migración, los movimientos de capital y el comercio son los medios a través de los cuales evoluciona el proceso acumulativo en forma ascendente en las naciones con suerte y en forma descendente en las desafortunadas. Por lo general, si tienen resultados positivos para las primeras, sus efectos son negativos para las últimas.

1.3.4 Crecimiento desequilibrado, economías externas y efecto de complementariedad en la industria

Para Hirschman (1958), es necesario generar un proceso de desarrollo en aquellas regiones que no han alcanzado el progreso económico. Afirma que cualquier teoría del desarrollo debe comenzar por la apreciación de las fuerzas que determinan la inversión en los países subdesarrollados, especialmente cuando nos damos cuenta de que el ahorro no es, de ninguna manera, el único factor limitativo y de que puede ser bajo, porque las inversiones son bajas en lugar de ocurrir lo contrario (Hirschman, 1961: 44).

El desarrollo se ve frenado principalmente por el problema de canalizar los ahorros existentes o potenciales hacia las oportunidades productivas disponibles, es decir, por una escasez de la capacidad de tomar y de llevar a cabo las decisiones de ahorro —evidentemente asume una posición diferente a la de Nurkse (1953).

Como apoyo a sus ideas, cita el trabajo de Lewis (1954), ya que según él, este autor se dio cuenta de que el crecimiento de los países subdesarrollados se ve frenado por la estrechez del sector moderno (capitalista) y no porque las clases de bajos ingresos tengan una incapacidad absoluta para ahorrar. Sin embargo, Lewis mantiene al ahorro en su papel tradicional como agente principal del crecimiento; y como desea relacionar al crecimiento con el tamaño del sector moderno y no con el de toda la economía llega naturalmente a la conclusión "clásica" de que sólo los capitalistas ahorran (Hirschman, 1961: 47).

El papel que ocupa la capacidad para invertir en el proceso de crecimiento es muy similar al que ocupa tradicionalmente la propensión a ahorrar. El poder de inversión se relaciona directamente con la actividad del inversionista, porque entraña el "olfato" para percibir las oportunidades; y como se supone que en las regiones desarrolladas existe una notable oferta de éstas, puede considerarse que la capacidad creciente para invertir proporciona las condiciones suficientes para provocar la inversión.

Pero si la economía sólo ha de depender de este proceso, su crecimiento sería lento, debe considerarse también el efecto de complementariedad que tiene la inversión, esto es, la capacidad que tiene una inversión inicial para generar niveles adicionales de la misma, lo que conduce a un proceso circular en el que la inversión produce más inversión, de forma algo indirecta: la inversión aumenta la capacidad productiva y, si la economía se amplía de tal manera que le hace un lugar a esta capacidad, el ingreso adicional basado en la capacidad incrementada tendrá como resultado más ahorro, que a su vez permitirá un monto adicional de inversión (Hirschman, 1961: 51):

... desde hace mucho tiempo, la [teoría de la producción] ha mostrado que un aumento en la producción de la mercancía A puede necesitar un aumento en la producción de la mercancía B o que en virtud de la complementariedad técnica, puede reducirse el costo marginal de la producción de la mercancía C.

Así, una inversión en la producción de A provoca el surgimiento de una serie de fuertes presiones para que la producción de B aumente y además ofrece fuertes incentivos para empezar la producción de C...

Esto es lo que denomina el "efecto de complementariedad" que refuerza la capacidad para invertir y que permite, junto a las economías externas, romper el círculo vicioso del estancamiento.

Por otro lado, Hirschman se muestra en desacuerdo con la teoría del crecimiento equilibrado, entre cuyos principales exponentes señala a Rosenstein-Rodan (1943), Nurkse (1953), Lewis (1955) y Scitovsky (1954), ya que señala que en uno de sus aspectos hace hincapié en la necesidad de que diferentes sectores de una economía en desarrollo crezcan al mismo ritmo para evitar dificultades de oferta. En esta versión la demanda impone el requisito del crecimiento equilibrado. Su crítica principal es que en esta teoría no puede presentarse un rompimiento del "equilibrio del subdesarrollo" en cualquiera de sus puntos. La teoría del crecimiento equilibrado llega a la conclusión de que debe imponerse una economía industrial moderna, enteramente nueva y completa, sobre el sector tradicional y estancado e igualmente completo. Se obliga a reinar la ley de Say independientemente en ambas economías. Su desilusión principal respecto a esta teoría es que en términos operativos resulta inútil, ya que se obliga a las regiones subdesarrolladas a aplicar montos enormes de aquellas capacidades cuya oferta es limitada. Generalmente, no existen los recursos necesarios para que aparezcan cambios simultáneos en muchos sectores.

Otro inconveniente que encuentra en esta teoría, es que normalmente se justifica la dirección y coordinación centralizadas del desarrollo, pero esto no es muy convincente, ya que una tarea que no pueden realizar ni las fuerzas del mercado ni la empresa privada no es ideal para la actuación de las au-

toridades públicas. Se debe reconocer que existen elementos que simplemente están por encima de la capacidad de una sociedad sin importar a quien se le encomienden. El crecimiento equilibrado en el sentido de un desarrollo múltiple simultáneo es una de estas. Además, la planeación centralizada de la inversión como promotor del crecimiento *per se* sería convincente si permitiera que la producción se organizara de tal manera que sólo se interiorizaran las economías externas mientras que las deseconomías externas y los costos sociales resultantes de las nuevas empresas siguieran siendo estrictamente externos a la autoridad central o insignificantes.

Para Hirschman (1958) la meta no debe ser eliminar los desequilibrios (cuyos síntomas en una economía competitiva son las pérdidas y ganancias), sino mantenerlos. Si se quiere que la economía siga creciendo, la tarea consiste en mantener las tensiones, desproporciones y desequilibrios. La secuencia que "nos aleja del equilibrio" es precisamente el patrón ideal de desarrollo: cada paso en la secuencia está inducido por un desequilibrio previo y, a su vez, crea un nuevo desequilibrio que requiere un paso adicional. Esto se logra porque la expansión de la industria A produce economías externas para A, pero que se puede apropiar B, mientras que la expansión consiguiente de B trae consigo economías externas para B, pero subsecuentemente internas para A (o en este caso para C), etc. A cada paso una industria se aprovecha de las economías externas creadas por una expansión previa y, al mismo tiempo, crea nuevas economías externas que pueden explotar otros productores.

Lo que genera el desarrollo es la complementariedad de la inversión que está asociada con las economías de escala. Complementariedad, en Hirschman, significa que un aumento de la producción de A conduce al surgimiento de presiones tendientes a aumentar la oferta disponible de B. Cuando B es un bien de producción privada, esta presión conducirá a la importación o al aumento de la producción nacional de B

porque a los productores de B les convendrá responder a la presión. Cuando B no se produce a través de una empresa privada, la presión no repercute en un autointerés pecuniario y se volverá presión política su abastecimiento. La complementariedad se manifiesta en forma de quejas sobre escasez, puntos de estrangulamiento y obstáculos al desarrollo.

Un tema que reviste especial importancia en Hirschman es el de los encadenamientos, analizado con el fin de indicar qué ruta se debe seguir para maximizar las ventajas que otorga la complementariedad, las economías externas, los rendimientos crecientes y la causación acumulativa. En relación a la inversión en el sector privado existen dos mecanismos incentivadores, los backward linkages y los forward linkages. El primero aplica a los bienes industriales intermedios y de capital, los cuales suministran insumos a la producción de otros artículos. Los segundos operan cuando un agente económico intenta utilizar sus productos como insumos en nuevas actividades. En la terminología de la matriz de insumo-producto, mientras los primeros se miden en las columnas, los segundos en las filas. De ambos, Hirschman consideraba que los backward linkages eran dominantes por ser el resultado de la presión de demanda, la cual a su vez genera los forward linkages que son mecanismos de inducción dependientes.

Independientemente del grado de dominancia de los *bac-kward linkages* en la promoción de la inversión, si actúan juntos el impacto será mucho mayor. De esta forma, las industrias que cuentan con ambos mecanismos son básicas o intermedias y sus productos se distribuyen a través de otros sectores industriales hasta alcanzar la demanda final. A tales industrias, propone Hirschman, se les debe dar preferencia por encima de las industrias de bienes de consumo, a las que considera de menor importancia en la estrategia del desarrollo económico.

Precisamente estos efectos encadenadores son los que dan cuenta del carácter acumulativo del proceso de desarrollo o subdesarrollo. Los encadenamientos hacia adelante y hacia atrás suministran el mecanismo para una expansión simultánea y progresiva en la oferta y demanda doméstica. Del lado de la oferta, incrementan la capacidad de oferta de una economía subdesarrollada, específicamente ampliando el sector de bienes intermedios y de capital. Por el lado de la demanda, retienen la demanda en una economía que de otra forma se volcaría hacia las importaciones. Una expansión inicial en la actividad económica induce sucesivos ciclos de expansión del producto, empleo e ingreso a través de los multiplicadores de la matriz de insumo-producto.

El estancamiento surge de un crecimiento insuficiente de la inversión en los sectores de bienes intermedios y de capital, de la escasa integración e interdependencia de la estructura industrial. En las economías estancadas el mecanismo circular y acumulativo que provoca una expansión simultánea en la capacidad de oferta y demanda se encuentra quebrantado. Al igual que Young, Rosenstein-Rodan y Nurkse, Hirschman alienta la especialización industrial manufacturera y considera secundarios a la agricultura y la minería por sus escasos encadenamientos entre ellos y con el resto de los sectores de actividad económica.

1.4 Explicación kaldoriana del crecimiento: manufacturas y rendimientos crecientes

En la segunda y tercera parte de este capítulo se han presentado los antecedentes de la perspectiva kaldoriana, con el objetivo de resaltar la importancia que tienen las manufacturas en el desempeño económico, vía la generación de rendimientos crecientes a escala, externalidades e incrementos en la productividad.

A partir de lo examinado, se puede afirmar que el estancamiento está relacionado a través de los rendimientos crecientes con la industria manufacturera; las bajas tasas de crecimiento se presentan cuando la estructura industrial manufacturera de un país es inexistente, débil o bien no cuenta con los suficientes encadenamientos productivos como para generar fuertes efectos de arrastre sobre el resto de sectores. Además, se ha argumentado que el proceso de crecimiento sigue una trayectoria circular y acumulativa.

En las actividades manufactureras una mayor división del trabajo, como consecuencia de los rendimientos crecientes a escala, genera un incremento en la productividad que impacta favorablemente el desempeño económico de una nación. Dicha división del trabajo se encuentra determinada por la extensión del mercado, que hace posible la generación de economías de escala, pero también es cierto que una mayor división del trabajo genera una mayor extensión del mercado debido a que incrementa los niveles de productividad, ingreso per cápita y poder de compra.

En esta sección, teniendo como base estas ideas, se presenta el modelo kaldoriano utilizado como guía analítica para explicar y superar el estancamiento económico en México.

1.4.1. Modelo de crecimiento económico kaldoriano

De acuerdo con el marco teórico propuesto por Kaldor, existe una sola manera de crecer de manera elevada y sostenida: industrializando. La razón para esto la encuentra en la existencia de rendimientos crecientes en esta clase de actividades. Siguiendo el trabajo de Verdoorn (1949), concluye que la productividad se incrementa cuando lo hace el producto manufacturero, debido a las economías tanto estáticas como dinámicas que se generan.

Argumenta que las fuentes de los rendimientos crecientes se encuentran a nivel de planta, empresa y/o industria y pueden ser estáticos o dinámicos, internos o externos en su origen, incluso ser el resultado de la concentración espacial de la actividad manufacturera (economías de aglomeración) (Kaldor, 1972: 1242-1243).

El crecimiento en Kaldor no está determinado únicamente por la oferta —principalmente la tasa de cambio tecnológico exógeno y el aumento de la fuerza de trabajo. La clave para entenderlo son los determinantes del componente exógeno del crecimiento de la demanda de productos manufacturados.

En un su modelo de dos etapas y dos sectores (economía cerrada y economía abierta; manufacturas y agricultura/minería) consideraba que inicialmente era la demanda emanada del sector agrícola la más relevante en la determinación de la productividad y el producto, después era reemplazada por el crecimiento de las exportaciones.

Además, el crecimiento del sector manufacturero no es autosostenible, requiere del soporte del sector agropecuario. Según él, la industrialización y la productividad en el sector agropecuario van mano a mano y son complementarias.

En las primeras etapas de la industrialización, el crecimiento del excedente agropecuario es la principal fuente de demanda para las manufacturas así como fuente de oferta de trabajo y capital. Consecuentemente, es la tasa de progreso técnico en las actividades basadas en la tierra la que determina la tasa de crecimiento del producto manufacturero.

En una segunda etapa o economía abierta, la demanda de exportaciones por productos industriales crece más rápido que la doméstica del sector agropecuario, debido principalmente a la alta elasticidad ingreso de la demanda por productos manufacturados (Kaldor, 1978: 141-142). De esta forma, el crecimiento de las exportaciones a través del multiplicador del comercio internacional de Harrod determina la tasa de crecimiento del producto manufacturero para un país particular, la cual, a su vez, depende de la tasa de crecimiento del ingreso mundial y del porcentaje de participación en la demanda mundial que logran capturar sus exportaciones.

Kaldor también criticó el enfoque basado en la perfecta sustituibilidad de los factores de la producción, con especial relación al modelo general de equilibrio competitivo, información perfecta y mercados completos, no únicamente la cuestión teórica, sino también el realismo de los supuestos. De acuerdo con Kaldor, las limitaciones de esta perspectiva se encuentran en su falla para considerar los rendimientos crecientes a escala (con sus variadas formas e implicaciones), las restricciones al crecimiento determinadas por la demanda, y la naturaleza esencialmente endógena del progreso técnico. Estos son problemas severos que no permiten usarlo para entender las causas del desarrollo (véase Kaldor 1972, 1975, 1985).

Más allá de las críticas, se propuso y consiguió presentar un marco teórico alternativo que retoma y sintetiza los postulados de Smith, Young, Hirschman, Myrdal y la tradición latinoamericana estructuralista. Kaldor desarrolló sobre la base de una serie de hechos estilizados un modelo de carácter circular que explica la naturaleza del crecimiento entre los países, al cual la literatura especializada ha decidido llamar: "leyes del crecimiento económico".

La primera ley de Kaldor señala: un rápido crecimiento de las manufacturas causará un rápido crecimiento del producto global. Las manufacturas son el motor del crecimiento económico.³ La ley se puede especificar como:

$$q_i = c + b_1 q_{MAN} \tag{1.1}$$

La idea de que el progreso económico está asociado con la industrialización ha estado sometida a críticas tanto de economistas neoclásicos que piensan que puede llevar a una mala asignación de recursos, como por economistas neomarxistas que piensan que esto generaría una gran explotación de los países subdesarrollados por parte de las multinacionales del mundo industrializado (Mamgain, 1999: 308). Wolfe (1968), en una réplica a Kaldor (1966), señala que no existe evidencia suficiente para concluir que el sector manufacturero es más importante que el sector servicios, a lo que Kaldor (1968) respondió demostrando que el sector servicios tiene un origen derivado de las manufacturas. Recientemente, Dasgupta y Singh (2005), usando datos de la economía hindú, demuestran que aún en la era de la información, las manufacturas continúan siendo el motor del crecimiento económico, aunque aclaran que una excepción puede constituirla el sector de tecnologías de la información.

donde q_i es el crecimiento del producto, el subíndice i denota el PIB global o cualquier otro sector individual no manufacturero y $q_{\rm \tiny MAN}$ es el producto de las manufacturas.⁴

Segunda ley de Kaldor o ley Verdoorn: un rápido crecimiento del producto industrial manufacturero, a través de los rendimientos crecientes a escala, conducirá a un rápido crecimiento de la productividad laboral. La especificación más simple es:

$$p_{LMAN} = \rho + \lambda q_{MAN}$$
 [1.2]

Donde p_{LMAN} es el crecimiento de la productividad laboral manufacturera y λ es el coeficiente de Verdoorn (0< λ <1). Una forma alternativa de presentar esta ley es:

$$l_{MAN} = -\rho + (1 - \lambda)q_{MAN}$$
 [1.3]

Dado que:

$$p_{LMAN} \equiv q_{MAN} - l_{MAN}$$
 [1.4]

Donde $l_{\mbox{\tiny MAN}}$ es la tasa de crecimiento del empleo en las manufacturas.

Otras dos formas adicionales de considerar esta relación son las que se presentan a continuación:

$$q_{MAN} = \frac{\rho}{1 - \lambda} + \left(\frac{1}{1 - \lambda}\right) l_{MAN}$$
 [1.5]

Para Thirlwall (1983) la distinción entre actividades industriales y actividades basadas en la tierra tiene profundas implicaciones para los procesos de crecimiento y desarrollo en todo el mundo, ya que algunas regiones se concentran en actividades sujetas a rendimientos decrecientes, mientras otras se dedican a la producción de bienes sujetos a rendimientos crecientes. La existencia de rendimientos crecientes no únicamente determina el concepto de equilibrio competitivo, sino que permite entender los procesos de crecimiento o estancamiento acumulativos que se viven en ciertas naciones respecto a otras.

$$p_{LMAN} = \frac{\rho}{1 - \lambda} + \left(\frac{\lambda}{1 - \lambda}\right) l_{MAN}$$
 [1.6]

Únicamente si las cuatro estimaciones son exactas, entonces las cuatro serán las mismas. Rowthorn (1975) criticó a Kaldor por estimar el coeficiente de Verdoorn indirectamente usando la primera y segunda de las especificaciones más que la cuarta, que es la que él considera que lo hace directamente (Thirlwall, 1983: 353).

Para Kaldor (1966), la primera y la segunda capturan bien el hecho de que tanto el progreso tecnológico como el crecimiento de la productividad están confinados a la manufactura, ya que ésta está sujeta a rendimientos crecientes.

En la industria se observa que la productividad tiende a crecer más rápidamente cuanto más rápido se expande el producto; esto significa que el nivel de productividad es función del producto acumulativo más que de la tasa de producción por unidad de tiempo. Para Kaldor, al igual que Young, los rendimientos crecientes son un fenómeno macro porque las economías de escala surgen como resultado de la creciente diferenciación, la aparición de nuevos procesos y nuevas industrias subsidiarias, que no pueden ser captados observando los efectos de la variación del tamaño de una empresa individual o de una industria en particular.

Tres cosas más deben agregarse: la primera, que para Kaldor la relación de Verdoorn es dinámica más que estática entre las tasas de cambio en la productividad y el producto, más que entre el nivel de la productividad y la escala del producto. Segunda, no sugiere que la relación de Verdoorn se aplique sólo a la manufactura o a cada industria manufacturera separadamente considerada, sino que su aplicación fuera del campo industrial es claramente limitada (Kaldor, 1966: 10-16).

Y tercera, el crecimiento económico, admite, es resultado de un proceso complejo de acción entre incrementos en la demanda inducidos por incrementos en la oferta y viceversa. Desde el punto de vista de la demanda, los determinantes del crecimiento del producto manufacturero son al menos tres: el consumo, la inversión externa y las exportaciones netas. Por el lado de la oferta, los obstáculos pueden ser de dos tipos: de mercancías (materias primas) o de trabajo (Kaldor, 1966: 19).

Otra forma de examinar la ley Verdoorn vendría dada por la ecuación que se presenta a continuación:

$$p_{LMAN} = \rho + \lambda q_{MAN} + \kappa k_{MAN}$$
 [1.7]

Donde se agrega la participación del capital. Si se usa la función de producción Cobb-Douglas, donde α y β son las elasticidades del capital y el trabajo, la ley Verdoorn puede ser escrita como

$$p_{LMAN} = \rho + \frac{\beta - 1}{\beta} q_{MAN} + \frac{\alpha}{\beta} k_{MAN}$$
 [1.8]

La que se puede simplificar usando el argumento presentado por Kaldor (1970: 339), en el sentido de que la tasa de crecimiento del capital es por si misma una función de la tasa de crecimiento del producto. La acumulación de capital resulta del desarrollo económico y también es la causa del mismo. De aquí se sigue que la tasa de crecimiento del capital es endógena al modelo y función de la tasa de crecimiento del producto:

$$k_{MAN} = c + b_2 q_{MAN}$$
 [1.9]

Dado el hecho estilizado de la constancia de la relación capital/producto, se espera que la estimación de b_2 sea alrededor de la unidad. Sustituyendo $k_{MAN} = q_{MAN}$ en la ecuación

[1.8] se obtiene la especificación tradicional de la Ley de Verdoorn-Kaldor (LVK) como:

$$p_{LMAN} = \rho + \lambda q_{MAN}$$
 [1.10]

Donde

$$\lambda = \frac{(\alpha + \beta - 1)}{\beta}$$

 λ , es el coeficiente de Verdoorn y a menudo toma un valor de un medio, lo que según Kaldor (1966: 35-40), provee evidencia de sustanciales rendimientos crecientes a escala. Si α y β son iguales, lo que es plausible para la industria, entonces un coeficiente de Verdoorn de 0.5 implica rendimientos crecientes a escala de 1.33.

El parámetro ρ es el crecimiento técnico exógeno, pero en la práctica una parte sustancial del mismo puede estar inducido por el crecimiento del producto. Consecuentemente:

$$\rho = \rho' + \psi q_{MAN}$$
 [1.11]

Y λ ahora sería igual a

$$\lambda = \frac{\alpha + \beta + \psi - 1}{\beta}$$

Y de [1.11] se puede interpretar la ley como una relación dinámica más que estática, el progreso tecnológico entra en ella y no es sólo reflejo de las economías de gran escala en la producción (Kaldor, 1966: 10). La LVK es uno de los primeros modelos de crecimiento endógeno.⁵

McCombie (1986: 1217) después de revisar el trabajo de Kaldor (1972) sugiere incorporar el efecto del capital en la estimación de la LVK, con lo que la

Tercera ley de Kaldor:⁶ El crecimiento del PIB por trabajador está positivamente relacionado con el crecimiento del producto manufacturero y negativamente relacionado con el crecimiento del empleo no manufacturero:

$$p_{PIB} = c + b_3 q_{MAN} - b_4 l_{NM}$$
 [1.12]

Donde $l_{\it NM}$ representa el crecimiento del empleo no manufacturero. La lógica de esta relación es que un rápido crecimiento de las manufacturas incrementará la productividad (y de aquí el PIB por trabajador) a través de la LVK. Sin embargo, con un excedente laboral en la agricultura y el sector servicios, un rápido crecimiento de la manufactura incrementará la productividad en este sector por los aumentos de las transferencias sectoriales de trabajo desde el resto de la economía (subempleo o desempleo disfrazado) a la manufactura. Como el trabajo se mueve de la agricultura donde la productividad marginal de trabajo es reducida hacia la manufactura donde esta es alta, la productividad termina por elevarse. De aquí se tiene que una rápida tasa de declive del empleo no manufacturero incrementará el crecimiento de la productividad no manufacturera (McCombie, 2002: 86-88).

Este catálogo de proposiciones constituye el modelo de crecimiento de Kaldor; a las que se puede agregar una cuarta, consistente en la ley Thirlwall, que propone que en una economía abierta, la principal restricción al crecimiento se encuentra en la balanza de pagos. Básicamente asevera, bajo ciertos supuestos, que los principales determinantes de la tasa de crecimiento son las elasticidades ingreso de la de-

variable dependiente se convierte en la productividad total factorial (TFP) y el coeficiente de Verdoorn $\lambda = \frac{v-1}{v}$ donde $v = \alpha + \beta$.

Existen razones para creer que esta tercera ley tiene algunas fallas; se sugiere la lectura de McCombie (1981) y Mamgain (1999: 297-298), donde se explican con detalle las mismas. La lectura de estos documentos permite interpretar mejor los resultados econométricos que se reportan en el tercer capítulo.

manda de importaciones y exportaciones, su base es el multiplicador dinámico del comercio internacional de Harrod.

Uniendo todas las leyes se puede concluir que una rápida tasa de crecimiento del producto industrial manufacturero tenderá a establecer un proceso acumulativo o círculo virtuoso del crecimiento a través del enlace entre el crecimiento del producto y la productividad manufacturera. Un país que sostiene un crecimiento elevado y persistente del producto, reducirá sus costos comparativos, lo que volverá difícil para otros establecer un volumen suficiente de producción que les permita ser competitivos.

A través de los beneficios que un rápido crecimiento manufacturero trae consigo, los países se involucran en un proceso acumulativo de progreso con el consecuente declive relativo de otros (estancamiento), debido a que los países que crecen primero y rápido se encuentran en posibilidad de sostener su ventaja en las actividades manufactureras respecto a aquellos que inician después o bien lo hacen lentamente (Thirlwall, 1983: 357).

En síntesis:

- El crecimiento manufacturero es el motor del crecimiento económico.
- Una alta tasa de crecimiento del producto manufacturero eleva el ritmo de crecimiento de la productividad laboral (LVK).
- El producto por persona o productividad de la economía se encuentra positivamente asociado con la producción manufacturera y negativamente relacionado con el empleo en las actividades no manufactureras.
- La LVK es un elemento central para entender los procesos de progreso o estancamiento económico. Esto debido a la existencia de rendimientos crecientes en las actividades industrial-manufactureras, resultado de la especialización y división del trabajo.

A partir del modelo kaldoriano se puede asegurar que, para que una economía mantenga una tasa de crecimiento elevada y persistente que le permita evadir el estancamiento, es necesario concentrarse en la producción de bienes manufacturados, particularmente los de mayor contenido tecnológico y conocimiento. El estancamiento se puede producir cuando una economía pierde dinamismo el moderno sector manufacturero (si es que lo hay), es el resultado de un "rompimiento" de la LVK, la producción industrial deja de crecer como efecto de contracciones en los factores de demanda v ello conduce a una reducción en la productividad laboral, lo que en consecuencia reduce el producto en una mayor cantidad, lo que a su vez se traduce en desempleo creciente y una profundización del estancamiento, que de no tomarse medidas de política económica que contrarresten esta tendencia pueden conducir a la crisis de todo el sistema económico. Aún más, el modelo supone que una vez que una nación se estanca, resultará difícil para la misma recuperar el dinamismo inicial, lo que la sume en un círculo acumulativo vicioso.

1.5 Conclusiones

De acuerdo con la teoría seleccionada, la industria manufacturera es el principal, si no el único, motor de crecimiento económico, algo que tiene una larga data en el pensamiento económico. Las manufacturas se constituyen en el sector más dinámico debido a: 1) la existencia de rendimientos crecientes, 2) sus productos tienen una alta elasticidad ingreso de la demanda, como consecuencia de la complejidad, creatividad e innovación que integra su realización y el hecho de que la mayoría de los insumos son manufacturas (bienes intermedios, bienes de capital), 3) tienen una alta elasticidad de oferta de largo plazo, 4) sus altos precios relativos respecto a la minería y la agricultura, 5) su capacidad para ayudar a superar la restricción de balanza de pagos, y 6) su papel como

fuentes de innovación y difusión tecnológica. El inciso final es debatible en el contexto de la revolución de la información y el conocimiento, pero es la combinación de todos los elementos lo que da a las manufacturas un toque especial.

El marco teórico elegido para la contrastación de la hipótesis incluye la existencia de rendimientos crecientes, complementariedades en la inversión, producción y consumo; cambio tecnológico endógeno, información imperfecta y una relación capital a trabajo que depende de la extensión del mercado y en menor medida del precio de los factores.

Privilegia la noción de desequilibrio para comprender la operación de las fuerzas del mercado, las externalidades tanto pecuniarias como tecnológicas juegan un papel relevante en este sentido, ya que su existencia implica divergencia entre los costos y beneficios social-privados, incluyendo con ello fallas en la coordinación del tiempo, magnitud y composición de las inversiones manufactureras, lo que motiva la participación de un Estado que garantice el funcionamiento adecuado de los mercados, en especial a través de una política de desarrollo industrial.

Un rasgo crucial de la teoría elegida es que el crecimiento del producto es una función del crecimiento de la demanda (principalmente inversión y exportaciones) más que del crecimiento de la oferta factorial, de hecho propone que la oferta se encuentra determinada por el crecimiento del producto. Como ya se ha dejado explícito en el documento, el progreso tecnológico es endógeno, y no se encuentra asociado a un factor residual no explicado por el modelo, dicha aportación sintetizada en Kaldor es anterior a la presentación de los modernos modelos de crecimiento endógeno.

Esta teoría establece una relación circular entre el crecimiento de la productividad y el del producto manufacturero. De tal forma que el crecimiento en el producto es causa del de la productividad y el crecimiento de la productividad fomenta el del producto manufacturero. El crecimiento en la

productividad y el producto son interdependientes y se autorrefuerzan.

La fuente de la productividad son los rendimientos crecientes, los cuales provienen principalmente de la división del trabajo y la especialización a nivel de planta, empresa e industria, los mismos pueden ser de tipo estático (asociados a las economías de escala) o dinámicos ("aprender haciendo", "aprender usando"), aunado a esto a nivel espacial, las economías de aglomeración juegan un papel central en la determinación del nexo productividad-producto.

La división del trabajo está relacionada con incrementos tanto en el capital por trabajador como en el tamaño del mercado. Una extensión superior del mercado permite mejorar la especialización, lo que ayuda a superar las indivisibilidades en el uso de capital; de hecho los aumentos en el *stock* de capital son complementarios más que sustitutos y elevan los rendimientos crecientes, característica que deja al descubierto una gran diferencia con respecto al paradigma neoclásico tradicional de crecimiento económico.

CAPÍTULO II

Estancamiento económico e insuficiencia dinámica manufacturera en México, 1982-2010

2.1 Introducción

omo se ha indicado teóricamente en el capítulo anterior, el crecimiento del producto se encuentra determinado por la demanda y en especial por la producción industrial manufacturera. Las manufacturas son el motor del crecimiento económico debido a: 1) la existencia de rendimientos crecientes, 2) sus productos tienen una alta elasticidad ingreso de la demanda, como consecuencia de la complejidad, creatividad e innovación que integra su realización; 3) sus altos precios relativos respecto a la minería y la agricultura, 4) su capacidad para ayudar a superar la restricción de balanza de pagos, y 5) su papel como fuentes de innovación y difusión tecnológica.

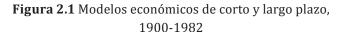
Teniendo en cuenta lo anterior, el objetivo general de este capítulo es demostrar que empíricamente existe una alta correlación entre el proceso de insuficiencia dinámica⁷ manufacturera y el estancamiento de la economía mexicana.

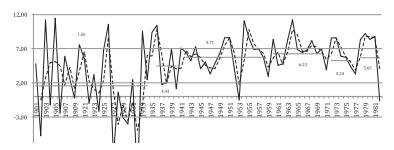
⁷ Se utiliza esta expresión para denominar a la falta de vigor en las tasas de crecimiento. Es un término que también alude al proceso de desindustriali-

El capítulo se construye sobre cinco objetivos específicos: 1) resaltar la importancia que tuvo el sector industrial en el desarrollo económico de México, principalmente de 1940 a 1970, 2) demostrar que desde 1982, pero particularmente de 1994 al 2010 la economía mexicana se encuentra estancada, tanto en términos de producto como de empleo, 3) exhibir la alta correlación positiva entre las tasas de crecimiento del PIB total y las del sector manufacturero; 4) resaltar los principales acontecimientos del periodo de estudio y en especial indicar los elementos más significativos de la política industrial actual, con la intención de contar con una perspectiva histórica, y 5) analizar el desempeño industrial manufacturero para encontrar evidencia preliminar que sustente el modelo teórico.

De forma concreta, en el capítulo se analiza la problemática del estancamiento a la luz del comportamiento histórico económico reciente de México y se detallan sus particularidades en términos de producto y empleo. Se explica la relación que las bajas tasas de crecimiento del producto y el empleo tienen con el sector industrial manufacturero. De particular importancia, de acuerdo con el marco teórico seleccionado, es el comportamiento de la productividad, empleo y producto industrial manufacturero, para determinar la existencia de procesos de causación circular acumulativos de tipo vicioso (estancamiento) o virtuoso (crecimiento).

Teniendo en cuenta estos objetivos, el capítulo se divide en cinco partes, la primera de las cuales es está breve introducción. En la segunda se analizan someramente los principales acontecimientos del periodo correspondiente a 1900-1982, destacando el papel jugado por el Estado y en especial el sector industrial. En la tercera parte se demuestra que desde 1982 la economía mexicana ha experimentado bajas tasas de crecimiento, fenómeno que es particularmente interesan-


zación y pertinacia del subempleo estructural. Para profundizar véase Rodríguez (2006: 141-156).


te de 1994 al 2010; la causa de este magro desempeño se asocia al proceso de insuficiencia dinámica manufacturera, como resultado del cambio estructural operado en la economía mexicana. Además se destacan los principales acontecimientos del Modelo de Apertura y Estabilización Macroeconómica (MAEM). En la cuarta parte se analiza el desempeño industrial manufacturero, enfatizando el comportamiento de variables como el número de establecimientos, personal ocupado, remuneraciones, valor agregado, inversión y productividad. En la quinta y última parte se exponen las conclusiones del capítulo.

2.2 Estado, industria y desempeño económico en México, 1900-1982

Para entender en toda su magnitud el problema de estancamiento que vive el país desde principios de los ochenta, es preciso revisar, aunque sea de manera sucinta, su historia económica. Se requiere situar el problema en su perspectiva histórica, poniendo especial énfasis en la creación, fortalecimiento y decadencia de la estructura industrial nacional. Dada la complejidad de esta tarea, a continuación se resumen los principales acontecimientos que han marcado el actual desempeño económico.

Para empezar, en la figura 2.1 se presenta una línea del tiempo que ilustra los diferentes modelos de corto plazo por los que atravesó la economía mexicana hasta antes de 1982, año en el que comienza el proceso de estancamiento y se inicia un segundo modelo de largo plazo que se ha denominado MAEM, caracterizado por bajas tasas de crecimiento del producto y el empleo.

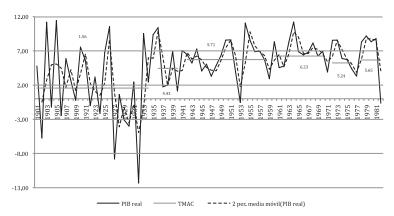
- Formación del Estado nacional
- b: Estado nacionalista
- c: Crecimiento con inflación y etapa inicial de la Sustitución de Importaciones
- d: Crecimiento con estabilidad de precios y cambiaria. Etapa avanzada de la Sustitución de Importaciones
- e: Cambio de rumbo
- f: Petrodependencia externa y desustitución de importaciones

Fuente: elaboración propia.

2.2.1 La formación y consolidación del Estado nacional

Los primeros 34 años del siglo XX marcaron sustancialmente el comportamiento seguido por la economía mexicana en las siguientes cinco décadas. En ese periodo se sentaron las bases del crecimiento económico basado en la industrialización, que sería el pivote de la estabilidad política y social.

Caos e incertidumbre son dos elementos que caracterizan esta primera etapa de la historia económica del país. La formación de un moderno Estado nacional sólo se pudo conseguir después de violentos enfrentamientos sociales entre ideologías y posiciones políticas divergentes.


Entre 1910 y 1924 el país vivió la etapa armada de la Revolución Mexicana, la cual tuvo impactos diferenciados tanto sectorial como espacialmente. La producción agrícola fue de las más afectadas, a medida que su fuerza de trabajo se fue comprometiendo en la lucha, y algunas de las tierras se expropiaron o quedaron improductivas. Todo lo contrario

de la economía de enclave minera y de transformación que evidenció su independencia del control nacional, de hecho, debido a la elevada demanda externa, propició que la balanza comercial fuera favorable para México.⁸ Mientras tanto, el sector de servicios era reducido y continuó operando con cierta regularidad en los principales centros urbanos del país. Espacialmente el impacto fue mayor en áreas cercanas a las ciudades del centro-norte del país, mientras una buena parte del territorio permanecía ajena al movimiento armado, debido principalmente a la escasa infraestructura de comunicaciones y transportes con la que se contaba por aquellos años.

Para 1920 el perfil de la economía era el siguiente: estancamiento en la producción, quiebra fiscal del Estado, desquiciamiento monetario-bancario y destrucción de la infraestructura económica. Las actividades se hallaban –a excepción del sector externo– en niveles inferiores a los de 1910 (Villarreal, 1988: 185). A pesar de la aprobación de la nueva Constitución en 1917, el país no lograba estabilizarse y crecer para satisfacer los requerimientos de consumo de la población (véase gráfica 2.1). Durante este primer periodo eran evidentes las debilidades y/o ausencias institucionales existentes y con ellas la incertidumbre y el estancamiento de la actividad económica.

⁸ Una situación parecida a la que se vive actualmente, sobre todo de 1994 en adelante, cuando se incrementan las exportaciones de productos ensamblados por las industrias maquiladoras, ubicadas en su mayoría en la frontera norte de México.

Gráfica 2.1 Crecimiento anual y promedio anual del PIB real

Los periodos que se consideran son: 1900-1934, 1934-1940, 1940-1958, 1958-1970, 1970-1976 y 1976-1982.

Fuente: elaboración con datos de Solís (2000: 94-97).

Después de la lucha armada, se vivió una transición entre 1925 y 1934, de redefinición del proyecto revolucionario y de construcción de todo tipo de instituciones. En 1929 se logró construir, al fin, el pacto político que sentaría las bases de un largo periodo de paz y estabilidad con la creación del Partido Nacional Revolucionario, justo en el mismo año que el mundo se veía trastornado por la primera gran crisis capitalista sistémica del siglo XX. 10

Durante esta etapa se generó un profundo y visionario proceso de reorganización de la participación del Estado en los

⁹ Dada la importancia de la creación de este partido para el fortalecimiento de un Estado nacionalista de vocación industrial, se recomienda la lectura de Tello (2007) y Newell y Rubio (1984), de este último en especial los tres primeros capítulos.

La Gran Depresión de 1929 generó en la mayoría de las economías de América Latina una secuela recesiva, siendo el mecanismo de transmisión del centro a la periferia el comercio exterior. El descenso en las exportaciones de la región fue el resultado de la contracción de la demanda en los países desarrollados. En el caso de México se puede decir que la Gran Depresión evidenció las limitaciones y contradicciones de una economía de enclave fortalecida durante los últimos veinticinco años del siglo XIX y primeros del XX.

ámbitos fiscal, financiero y bancario. Se avanzó hacia la modernización, dada la época y las circunstancias. Las políticas económicas propiciaron la construcción de una economía de fuerte participación estatal ante la insuficiencia de empresarios nacionales que crearan las condiciones requeridas por el país.¹¹

De esta forma, una buena parte de la actividad productiva quedó sujeta a los planes y decisiones del gobierno, el cual se guió por los criterios dictados por las necesidades sociales existentes, dejando a un lado el argumento de la rentabilidad. No obstante, otra parte continuó rigiéndose por los precios o mecanismos de mercado. Asimismo, el naciente Estado nacional creó un sistema bancario y financiero para el desarrollo de la iniciativa privada. Se estableció el Banco de México como órgano financiero central y banco único de emisión. Por las mismas fechas, el gobierno fundó el banco agrícola y ejidal para atender las necesidades de los campesinos, instituyéndose también bancos de fomento para la creación de infraestructura que por su costo, magnitud o rentabilidad estaban fuera del alcance de la iniciativa privada (Blum, 2001: 31). Un dato más: la aplicación del Artículo 27 de la Constitución dejó en manos del Estado el control de los recursos naturales no renovables, con ello se dio un gran paso para la ruptura con el modelo de economía de enclave primarioexportador.

Para principios de los treinta el Estado tenía claro que, entre otras cosas, era necesario modernizar el campo mexicano, abandonar el modelo de enclave que se contraponía al principio nacionalista emanado de la revolución, fortalecer e incrementar la participación estatal en todos los asuntos económicos y financieros, negociar los enormes privilegios y poder que poseía el capital extranjero, sin una confronta-

Hasta la fecha, la reducida clase empresarial nacional sigue siendo un límite al desarrollo productivo, especialmente en las actividades manufactureras, al respecto véase el caso de estudio presentado por Vázquez y Hernández (2008).

ción que implicase una intervención armada; lograr un reconocimiento por parte de la comunidad internacional de la legitimidad del Estado revolucionario y del marco jurídico constitucional y, quizás el elemento más importante, los gobernantes reconocían el valor que tenía la nacionalización de las principales áreas estratégicas y la creación y conservación de un mercado interno que evitara la enorme dependencia que se tenía del sector externo (Villarreal, 1988: 186).

El periodo 1934 a 1940 (Estado nacionalista) es determinante para entender, por comparación, las causas actuales del moderno estancamiento. En ese lapso se establece un modelo económico de largo plazo basado en la industrialización y una activa participación del Estado en la economía. El gobierno del presidente Cárdenas se involucró plenamente en la consolidación de un modelo nacionalista de desarrollo económico.

Algunos de los rasgos más relevantes del periodo son: 1) intensificación del reparto agrario, 2) nacionalización del petróleo e industria ferrocarrilera, 3) reorganización política, 4) reorganización y fortalecimiento del movimiento obrero, 5) utilización de la política fiscal con fines de manejo económico o contracíclico, 6) creación de instituciones económicas que se abocaron al financiamiento y desarrollo de infraestructura (Nacional Financiera, Banco Nacional de Obras Públicas, Banco Nacional de Comercio Exterior, etcétera), 7) impulso al sector energético, tanto de uso doméstico como industrial; 8) reorganización del sistema bancario y fortalecimiento del Banco de México, quien controla la política crediticia y de tipo de cambio; 9) la estrategia de industrialización no es aún concebida explícitamente como el gran paso a dar para el desarrollo, sin embargo, todos los esfuerzos emprendidos conducen a ello; y 10) el Estado revolucionario y nacional como agente promotor del desarrollo económico.

A pesar del escaso énfasis que de 1934 a 1940 se puso en la industrialización, para el último año, la estructura económica del país, como consecuencia de la política Cardenista, ya presentaba signos de su transformación industrial. La participación de la industria en el PIB era de 25.1%, donde destacan las manufacturas con un 15.4%, la construcción 2.5%, la energía eléctrica 0.8% y las industrias del petróleo 2.9%. El comercio y los servicios de manera similar a lo que ocurre actualmente, representaban más del 50%, mientras que el sector primario participaba con 19.4% y la minería con el 6.4% (véase cuadro 2.1).

Cuadro 2.1 Estructura económica sectorial en porcentajes, 1900-1982

	Agricultura	Minería*	Manufactura	Construcción	Electricidad	Transportes	Comercio	Otros servicios
1900	25.8	3.4	10.8	1.0	0.1	1.4	32.7	24.8
1910	24.0	4.9	10.7	1.4	0.3	1.2	33.7	23.8
1926	20.7	10.4	10.7	2.2	0.6	1.7	31.2	22.5
1931	21.8	7.6	11.8	2.1	0.7	2.5	32.9	20.5
1934	22.9	7.7	12.4	3.2	8.0	2.7	29.1	21.3
1940	19.4	6.4	15.4	2.5	8.0	2.5	30.9	22.1
1950	19.2	5.0	17.1	3.6	0.7	3.3	31.6	19.5
1958	17.4	4.8	18.1	3.9	0.9	3.5	31.0	20.4
1970	11.6	5.2	22.8	4.6	1.8	3.2	31.9	18.9
1976	9.5	4.7	24.0	4.7	2.3	4.1	31.5	20.3
1980	8.6	6.2	24.5	4.8	2.3	4.9	31.6	18.5
1981	8.4	6.5	24.0	5.0	2.4	5.0	32.1	18.2
1982	8.3	7.1	23.5	4.7	2.6	4.6	32.0	19.0

^{*} Incluye el petróleo

Fuente: elaboración propia con datos de Solís (2000:82-85).

2.2.2 Estado, industrialización y crecimiento económico

La Segunda Guerra Mundial fue un suceso que alteró radicalmente el panorama económico internacional. Su inicio y posterior evolución trastocaron los fundamentos del comercio internacional entre los países centrales y periféricos, lo que indujo a estos últimos a cubrir su demanda interna con producción nacional, estimulando en una buena parte de ellos, entre los que se incluye México, un proceso de sustitución de importaciones, que lejos de ser una política deliberada de los gobiernos de aquella época, fue resultado de las condiciones internacionales adversas.

Es precisamente durante los años cuarenta, que las condiciones en el país para la industrialización, generadas en décadas anteriores, se complementaron para comenzar el despegue industrial. Reconociendo plenamente su importancia, la industria se convirtió en el motor de un crecimiento económico ininterrumpido por más de 40 años, enfocado a la satisfacción de la demanda interna (véase las gráficas 2.1 y 2.2).

Desde la perspectiva de la historia económica, se puede calificar al periodo 1940-1982 como un ciclo de crecimiento económico autosostenido basado en una estrategia de Industrialización por Sustitución de Importaciones (ISI) y un crecimiento hacia adentro, dividido comúnmente en tres etapas: 1) industrialización sustitutiva de bienes de consumo con inflación (1940-1958), 2) industrialización sustitutiva avanzada y crecimiento económico con estabilidad cambiaria y de precios (1958-1970), y 3) de sustitución de importaciones y petrodependencia externa (1976-1982) (Villarreal, 1988: 205).

La estrategia de ISI puesta en marcha fue un proceso de diversificación de la actividad económica y de políticas de protección, fomento y regulación industrial. La industrialización conseguida transformó a México de un país agrario-minero

en uno industrializado de nivel intermedio y de servicios; de un país eminentemente rural a otro urbano con todos los inconvenientes que se sabe esto genera (véase cuadro 2.1).

La ISI permitió crear un conjunto de actividades productivas que se caracterizaron por una baja vulnerabilidad externa y por un dinamismo más estable. Sin embargo, a pesar de que durante el periodo 1940 a 1970 los logros del proceso de industrialización en materia de empleo, distribución del ingreso y progreso técnico son superiores a los del modelo de largo plazo iniciado en 1982, la estrategia de ISI presentó límites para superar la vulnerabilidad externa de la economía y crear una estructura industrial nacional plenamente integrada y con un mercado interno pujante, requisito fundamental para garantizar un crecimiento sostenido (Villarreal, 1988: 205).

12.00
8.00
4.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10

Gráfica 2.2 Crecimiento anual y promedio anual del PIB per cápita real

Los periodos que se consideran son: 1900-1934, 1934-1940, 1940-1958, 1958-1970, 1970-1976 y 1976-1982.

Fuente: elaboración con datos de Solís (2000: 94-97).

Durante la estrategia de ISI, la industria manufacturera creció a razón de 7% promedio anual, impulsando así el crecimiento del PIB a una ritmo promedio de 6% anual. Al auge industrial le siguió un importante aumento del empleo y de la productividad del trabajo (véase cuadro 2.2). En términos acumulados la producción manufacturera en 1980 fue quince veces mayor que en 1940, pasando de una participación de 15 a 24% del PIB, habiendo generado empleo por 5.8 veces más (Villarreal, 1988: 201-202).

Por otro lado, las actividades agropecuarias redujeron paulatinamente su participación al pasar de 20 a 8% en 1980, como consecuencia de una transferencia de trabajadores del campo a la ciudad y de notables incrementos en la productividad por persona ocupada. Este sector se constituyó, además, en fuente de divisas y materias primas para el proceso de industrialización. La economía mexicana vivió durante cuarenta años un círculo cuasi virtuoso de crecimiento económico, basado primordialmente en el dinamismo del sector industrial manufacturero.

Cuadro 2.2 Distribución de la población ocupada por sectores de actividad

	Total	Sector primario	Sector secundario	Sector terciario	No especificado
1895	4,761,914	62.5	14.5	16.2	6.7
1900	5,131,051	61.9	15.7	16.3	6.1
1910	5,337,889	67.2	15.1	16.6	1.2
1921	4,883,561	71.4	11.5	9.3	7.8
1930	5,165,803	70.2	14.4	11.4	4.1
1940	5,858,116	65.4	12.7	19.1	2.8
1950	8,272,093	58.3	16.0	21.5	4.3
1960	11,332,016	54.2	19.0	26.1	0.7
1970	12,955,057	39.4	23.0	31.9	5.8
1980	21,941,693	25.1	20.4	23.8	29.9

Fuente: elaboración a partir del disco Estadísticas Históricas de México, INEGI.

2.2.3 La industria en México

El sector industrial, como se demostrará, y en especial las manufacturas, han seguido un proceso de paulatina pérdida de dinamismo (véase gráfica 2.3), principalmente las correspondientes a capital nacional y satisfacción de la demanda interna. Hoy se vive un estancamiento económico producto de una industrialización incompleta o trunca. Enseguida se señalan los rasgos del proceso de industrialización.

Desde antes de la Independencia y aún después de la misma, el país se encontraba sujeto a diferentes restricciones coloniales que obstaculizaban a las manufacturas y con ello el crecimiento económico de México. La inestabilidad política y las continuas guerras tanto internas como externas, ocurridas entre 1821 y 1870, restringieron las posibilidades de crecimiento industrial.¹²

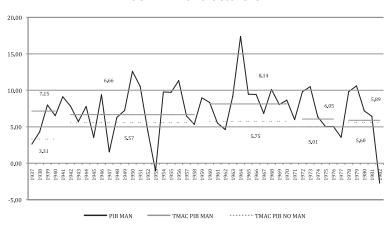
Para las últimas décadas del siglo XIX México era, en su mayor parte, un país rural. Las haciendas producían para el consumo interno utilizando técnicas de producción tradicionales; el sector minero se orientaba hacia la explotación y exportación de minerales preciosos, mientras que las áreas

De acuerdo con información de Haber (1992: 36), antes del ascenso de Porfirio Díaz, el Estado mexicano era débil y caótico. El gobierno central ejercía escaso control sobre las provincias, las cuales operaban con autonomía casi total. Así, la política nacional se caracterizó entre 1821 y 1876 por la sucesión en el mando de caudillos provinciales. En los 55 años que median entre la Independencia y el porfiriato, hubo 75 cambios en la presidencia. Un personaje militar, Antonio López de Santa Anna, ocupó la silla presidencial en 11 ocasiones.

En Moreno-Brid y Ros (2004: 36-40) se explican ampliamente las políticas y principales problemas enfrentados por México en el siglo XIX. Documentan el proceso de estancamiento económico, asociado al declive, entre otras condiciones, de la industria manufacturera, la cual pasó de 22.3% del PIB en 1800 a 18.3% en 1845, 21.6% en 1860, 16.2% en 1877, 12.8% en 1895 y 14.9% en 1910. Entre 1800 y 1860, mientras Estados Unidos exhibía tasas de desarrollo económico sin precedentes, el PIB total mexicano cayó 5% y el ingreso per cápita se redujo 30%. En 1820, el PIB por persona en México representaba el 60% del americano, 28% en 1870, 33% en 1913, 25% en 1950, 25% en 1973, 26 % en 1990 y 24% en 1998.

urbanas, relativamente reducidas, desarrollaban pequeñas industrias artesanales y comerciales (Hernández, 1985: 23).

De esta forma, se puede asegurar que México era un país rural con muy pocas actividades manufactureras, su economía, como ya se ha mencionado antes, se caracterizaba por ser de enclave agropecuario-minero, controlada principalmente por hacendados y capitalistas extranjeros, principalmente norteamericanos y europeos. En este marco, la economía nacional era sumamente sensible a los vaivenes de la economía internacional. La restricción externa al crecimiento se encontraba presente desde entonces, como resultado de una inadecuada estructura productiva, además existía una fuerte dependencia con respecto a los centros económicos que desanimaba cualquier posibilidad de progreso económico.¹⁴


De 1900 a 1930¹⁵ poco se hizo realmente en materia industrial, la mayoría de avances de los que se tiene registro obedecieron a cambios institucionales y políticos que sentarían las bases de una naciente y pujante economía.¹⁶ Fue hasta el sexenio de Lázaro Cárdenas que realmente se dio un gran impulso a la formación de un moderno sector industrial que abastecería el creciente mercado interno. En el periodo 1934-1940 el gobierno se avocó a crear una serie de organismos cuyo fin directo consistía en desarrollar la infraestructura básica que el país necesitaba para su posterior desenvolvimiento. La sociedad y sus gobernantes de corte revolucionario se

¹⁴ Para mayores referencias sobre las condiciones de la industria en México durante el siglo XIX, véase Haber (1992) y Coatsworth (1978, 1990).

¹⁵ Para mayores referencias sobre las condiciones industriales existentes en México de 1900 a 1930 véase Bortz y Haber (2000).

Se percibe con claridad una inconsistencia en el desarrollo económico de México, a pesar de que la Independencia política de México se consigue en las primeras dos décadas del siglo XIX. Transcurrieron más de cien años para que se hiciera realmente algo para conseguir la cuasi-independencia económica temporal de la economía con la construcción de una industria manufacturera nacional. Al celebrarse el bicentenario de la Independencia política, se tendrá que recordar con vergüenza que la reestructuración productiva iniciada en los ochenta ha fortalecido el proceso de dependencia externa y el estancamiento económico.

encontraban conscientes de la importancia que tenía romper con la economía de enclave.

Gráfica 2.3 Crecimiento anual y promedio anual del PIB manufacturero

Los periodos son: 1934-1940, 1940-1958, 1958-1970, 1970-1976 y 1976-1982. **Fuente:** elaboración con datos de Solís (2000: 82-85)

A partir de 1940 existe un reconocimiento explícito del Estado respecto a la importancia de la industrialización, se entiende que la solución a los problemas de empleo de la creciente fuerza de trabajo (véase cuadro 2.2) pasa por una vinculación virtuosa y eficiente entre el sector industrial manufacturero y los sectores primario y terciario.

Los principales rasgos de la política de industrialización pueden ser definidos como sigue (Ros y Casar, 1983: 156): a) una política de protección y promoción industriales a través de la introducción del sistema de permisos previos a la importación, a mediados de los cuarenta, y del sistema de exenciones fiscales a principios de la misma década; b) la intervención directa en la producción manufacturera en algunas ramas como siderúrgica, fertilizantes y papel, c) el financiamiento de largo plazo de la inversión industrial, a través del

aparato financiero público, en donde el papel más activo lo ocupaba Nacional Financiera, y d) una política de apertura del sector manufacturero hacia la inversión extranjera.

El proceso de industrialización mexicano, al igual que el de la mayoría de países latinoamericanos, es de naturaleza tardía y toma ímpetu a partir de la Segunda Guerra Mundial. El proceso de crecimiento industrial se fundamentó en la ISI divida en al menos tres etapas: sustitución de bienes de consumo, sustitución de bienes intermedios y sustitución de bienes de capital. Sólo la primera fue alcanzada satisfactoriamente, mientras la segunda y la tercera no lograron culminar exitosamente, lo que convirtió a México en un país semiindustrializado (ver cuadro 2.3).

Además, merece destacarse que durante la ISI el sector manufacturero recibió el apoyo del gobierno a través de cuatro canales diferentes: 1) el establecimiento de precios artificialmente altos para los productos finales vendidos en el mercado interno, debido a la protección comercial, 2) los bajos costos de insumos claves como la energía y otros bienes subsidiados, 3) el subsidio al crédito proveniente de la banca de desarrollo y de ciertas entidades públicas, pero también del sector bancario privado, y 4) las exenciones fiscales para ciertas importaciones de maquinaria y equipo (Moreno-Brid, Santamaría y Rivas, 2006: 97).

Durante el periodo 1940-1970 se recurrió al establecimiento de controles cuantitativos a la importación y a sistemas de protección arancelaria que garantizaran a la industria los mercados domésticos en expansión. La industrialización hacia adentro, caracterizada por la presencia de un mercado interno cautivo, pronto comenzó a agotar su dinamismo a finales de la década de los sesenta al hacerse más difícil la sustitución de bienes no tradicionales y al agotarse las fuentes de divisas para el creciente volumen de importaciones requeridas, ante lo cual tuvo que recurrirse al endeudamiento externo. Aunado a esto, una parte importante de las activi-

dades industriales comenzó a oligopolizarse y concentrarse espacialmente, convirtiendo la concentración de la industria en una regla, mas que la excepción, dentro de las manufacturas (Hernández, 1985: 59). (véase el cuadro 2.3)

Cuadro 2.3 Índice de la ISI

			aro 2::	caaaio 2.3 maice ae la mi	מרום	1				
							Tasas de	Tasas de cambio		
Sectores	1939	1950	1958	1969	39-50	20-58	28-69	39-58	28-69	39-68
Alimentos bebidas y tabaco	16.68	3.57	2.67	1.96	13.11	6.0	0.71	14.01	0.71	14.72
Textiles	17.97	9.61	4.48	3.06	8.36	5.13	1.42	13.49	1.42	14.91
Calzado y prendas de vestir	23.17	1.37	1.03	0.36	21.8	0.34	0.67	22.14	0.67	22.81
Madera y corcho	60.52	5.93	7.72	5.33	54.59	-1.79	2.39	52.8	2.39	55.19
Imprenta	18.86	10.11	7.62	12.4	8.75	2.49	-4.78	11.24	-4.78	6.46
Cuero	9:59	3.03	5.27	4.03	62.57	-2.24	1.24	60.33	1.24	61.57
Manufacturas diversas	64.36	47.68	47.52	33.67	16.68	0.16	13.85	16.84	13.85	30.69
Bienes de consumo	22.22	6.9	5.72	4.8	15.32	1.18	0.92	16.5	0.92	17.42
Papel	47.93	29.65	30.51	28.57	18.28	-0.86	1.94	17.42	1.94	19.36
Hule	55.64	22.97	11.2	6.95	32.67	11.77	4.25	44.44	4.25	48.69
Química	60.22	52	54.2	28.83	8.22	-2.2	25.37	6.02	25.37	31.39
Minerales no metálicos	45.41	16.85	15.56	7.42	28.56	1.29	8.14	29.85	8.14	37.99
Metales básicos	61.37	50.54	36.01	17.17	10.83	14.53	18.84	25.36	18.84	44.2
Bienes intermedios	55.91	41.55	40.35	22.32	14.36	1.2	18.03	15.56	18.03	33.59

							Tasas de	lasas de cambio		
Productos metálicos	69.81	47.17	29.75	26.87	22.64	17.42	2.88	40.06	2.88	42.94
Maquinaria no eléctrica	69'66	88.55	88.52	71.12	11.14	0.03	17.4	11.17	17.4	28.57
Maquinaria eléctrica	89.09	54.43	55.45	32.93	34.66	-1.02	22.52	33.64	22.52	56.16
Transporte	94.34	74.7	66.51	49.86	19.64	8.19	16.65	27.83	16.65	44.48
Bienes de capital	90.29	73.57	68.64	49.61		4.93	19.03	21.65	19.03	40.68
Total manufacturero	48.56	31.12	31.14	22.58	17.44	-0.02	8.56	17.42	8.56	25.98

Fuente elaboración propia en base a Villarreal (1997:71-82).

Ahondando un poco más en lo que refiere a la capacidad para importar, debe señalarse que durante la primera fase de crecimiento (1940-1958), impulsada por el sector agrícola, la posibilidad para importar se elevó, debido principalmente al aumento de las exportaciones de mercancías (productos agrícolas, inclusive en sustitución de los mineros). Durante la segunda fase de desarrollo (1958-1970),¹⁷ ciertamente se apoyó a la industria, pero a costa de reducir las exportaciones, por lo que la capacidad para importar dependió del turismo v del endeudamiento externo. El aparato productivo se enfocó hacia el mercado interno, ampliando la infraestructura industrial y sustituyendo importaciones. Se puede aseverar que mientras en la primera etapa el crecimiento se orientó hacia afuera, en la segunda lo hizo hacia la demanda interna. La tercera fase (1970-1982) fue también de desarrollo basado en el sector industrial, aunque la capacidad para importar se incrementó como consecuencia de los considerables aumentos de las exportaciones, esencialmente petroleras. Es la etapa de la monodependencia petrolera y el endeudamiento externo, mejor conocida por algunos críticos como la "docena trágica" (véase el cuadro y la gráfica 2.4). De forma general, durante el periodo 1940-1981 la economía se caracterizó por la creciente participación del Estado y el fomento de la industrialización como mecanismo para el crecimiento del producto y el empleo (Solís, 2000: 214-215).

Durante este periodo, y en especial en 1965, se estableció el régimen de manufactura *in-bond* o industria maquiladora de exportación (IME), aún antes del desmantelamiento de las restricciones a las importaciones. A partir de 1968 los servicios de transformación de las empresas maquiladoras empezaron a tener importancia dentro de los ingresos corrientes de la balanza de pagos y como complemento al desarrollo industrial del país. Hoy en día las maquiladoras han incrementado su participación y prácticamente sustituyen a las manufacturas. Se han constituido en un componente fundamental para la creación de empleos inciertos, exportaciones con mínimo contenido manufacturero nacional y desarticulación productiva nacional.

Cuadro 2.4 Comportamiento de las exportaciones e importaciones, 1900-1982

M/PIB X/PIB 1900 10.10 11.31 1910 6.61 9.48 1926 6.97 12.65 1931 5.12 9.48 1934 8.02 15.51 1940 8.11 11.64 1950 10.45 10.29 1958 10.74 6.73 1970 7.03 4.48 1976 7.96 5.48 1980 10.82 9.25 1981 10.86 9.31 1982 15.56 22.01			
1910 6.61 9.48 1926 6.97 12.65 1931 5.12 9.48 1934 8.02 15.51 1940 8.11 11.64 1950 10.45 10.29 1958 10.74 6.73 1970 7.03 4.48 1976 7.96 5.48 1980 10.82 9.25 1981 10.86 9.31		M/PIB	X/PIB
1926 6.97 12.65 1931 5.12 9.48 1934 8.02 15.51 1940 8.11 11.64 1950 10.45 10.29 1958 10.74 6.73 1970 7.03 4.48 1976 7.96 5.48 1980 10.82 9.25 1981 10.86 9.31	1900	10.10	11.31
1931 5.12 9.48 1934 8.02 15.51 1940 8.11 11.64 1950 10.45 10.29 1958 10.74 6.73 1970 7.03 4.48 1976 7.96 5.48 1980 10.82 9.25 1981 10.86 9.31	1910	6.61	9.48
1934 8.02 15.51 1940 8.11 11.64 1950 10.45 10.29 1958 10.74 6.73 1970 7.03 4.48 1976 7.96 5.48 1980 10.82 9.25 1981 10.86 9.31	1926	6.97	12.65
1940 8.11 11.64 1950 10.45 10.29 1958 10.74 6.73 1970 7.03 4.48 1976 7.96 5.48 1980 10.82 9.25 1981 10.86 9.31	1931	5.12	9.48
1950 10.45 10.29 1958 10.74 6.73 1970 7.03 4.48 1976 7.96 5.48 1980 10.82 9.25 1981 10.86 9.31	1934	8.02	15.51
1958 10.74 6.73 1970 7.03 4.48 1976 7.96 5.48 1980 10.82 9.25 1981 10.86 9.31	1940	8.11	11.64
1970 7.03 4.48 1976 7.96 5.48 1980 10.82 9.25 1981 10.86 9.31	1950	10.45	10.29
1976 7.96 5.48 1980 10.82 9.25 1981 10.86 9.31	1958	10.74	6.73
1980 10.82 9.25 1981 10.86 9.31	1970	7.03	4.48
1981 10.86 9.31	1976	7.96	5.48
	1980	10.82	9.25
1982 15.56 22.01	1981	10.86	9.31
	1982	15.56	22.01

Se incluye el petróleo.

Fuente: elaboración con datos de Solís (2000: 94-97).

Después de la desaceleración ocurrida a principios de los años sesenta (véase gráfica 2.3), que corresponde al agotamiento de los efectos dinámicos del auge de inversión de mediados de los cincuenta, se inicia hacia en 1963-1964 un nuevo periodo de expansión que presencia ciertos cambios, tanto en relación a los sectores más eficientes como al peso y relaciones entre los agentes que promueven el proceso. El factor más importante, sin duda, es la pérdida de liderazgo y dinamismo del Estado y del capital local frente a la empresa internacional que, en la modalidad de filiales, registra su mayor expansión transnacional.

La presencia de capital extranjero es dominante en tres de las cuatro mejores industrias en los años sesenta (automotriz, maquinaria no eléctrica y aparatos eléctricos) y creciente en la cuarta más dinámica (industria química). En estas ramas, las empresas de capital foráneo comienzan la generación de nuevas actividades, o bien, absorben empresas de capital local y crecen a partir de ellas. Sus redes alcanzan incluso a las industrias tradicionales de bienes de consumo, constituyéndose, en un buen número de casos, en el núcleo dirigente (Ros y Casar, 1983: 157-158).

El Estado a mediados de los sesenta, de a poco, pierde su carácter activo y promotor, para convertirse crecientemente en interventor pasivo y complementario; la creación de infraestructura y la provisión de insumos estratégicos a bajo costo se convierten en sus funciones principales.

40,000
20,000
1940-1958
1958-1970
1970-1976 1976-1982

-20,000
-40,000
1900-1934
1934-1940
-80,000
-120,000
-140,000
-140,000
-140,000
-140,000
-140,000
-140,000
-140,000
-140,000
-140,000
-140,000

Gráfica 2.4 Saldo de la balanza comercial, 1900-1982 (mp 1980=100)

Fuente: elaboración con datos de Solís (2000: 94-97).

A partir de los años setenta el modelo de desarrollo industrial comenzó a mostrar una paulatina desaceleración en su crecimiento, caracterizándose por periodos de recesión seguidos de expansiones de corta duración (véase gráfica 2.3); además, aparece desde el punto de vista de la estructura productiva, crecientemente orientado hacia la diferenciación y diversificación de los consumos modernos de bienes durables, reproduciendo el atraso histórico en la producción de bienes de capital y desarticulado cada vez en mayor medida del sector agrícola (Ros y Casar, 1983: 159).

Mientras la tasa media anual de crecimiento de las manufacturas fue de 8.14% para el periodo de 1958 a 1970, para 1970-1976 se redujo a 6.05% y bajó aún más (5.89%) para 1976-1982. El relativo estancamiento manufacturero registrado en la última década del periodo 1940-1982 fue consecuencia del modelo de desarrollo adoptado por el país, en especial por la naturaleza dependiente de todo proceso de industrialización que se basa en la sustitución de importaciones, pero también obedece a la excesiva petrodependencia generada por aquellos años y el asomo de la fea cabeza de la corrupción (Hernández, 1985: 33).

El estancamiento manufacturero con el modelo de ISI se debió, además de las razones ya esbozadas, al hecho de que las plantas no lograron niveles de eficiencia y competitividad que les permitieran competir en los mercados internacionales, donde la protección tendió a ser excesiva y en muchos casos de naturaleza indiscriminada. Además, la industria dependía de las divisas generadas por otros sectores, en especial el primario, el cual terminó totalmente expoliado. También contribuyó la estrechez del mercado doméstico, el cual no garantizó el acceso a economías de escala necesarias para incrementar la productividad del sector; el desarrollo industrial encontró su principal limitación en la lenta expansión de los mercados internos, agudizada por los módulos altamente concentradores del ingreso (Hernández, 1985: 34).

Para finales de 1970 era clara la naturaleza estructural de los obstáculos al crecimiento manufacturero: se acentuó la dependencia de la planta productiva con el resto del mundo, principalmente Estados Unidos, seguía presente la desigualdad económica, la cual obstaculizaba el crecimiento del mer-

cado interno y, se redujo aún más la capacidad competitiva de las manufacturas en los mercados internacionales, lo que paulatinamente conduciría al actual círculo vicioso de estancamiento económico.

2.3 Estancamiento y crecimiento macroeconómico, 1982-2010

A pesar de los evidentes signos de deterioro económico que se presentaban en el país, de 1978 a 1981, México vivió uno de los periodos de crecimiento económico más intensos de su historia (véase gráficas 2.1 y 2.2). En ese lapso el crecimiento promedio anual del PIB fue superior al 8%; la tasa de formación bruta de capital fijo llegó en 1981 al 26.4%; de la inversión total en ese año, el 54.6% era inversión privada y el 45.4% pública. La ocupación creció en forma significativa, lo que contribuyó a paliar el deterioro de los ingresos reales de la población (Guillén, 2000: 45). Son los años de la petrodependencia y la desustitución de importaciones que marcarían el cambio de rumbo en la política económica.

No obstante el crecimiento nacional registrado durante esta coyuntura, a nivel mundial se comenzaba a experimentar un proceso de desaceleración que terminaría afectando a la economía nacional, dada la situación de estrangulamiento externo que se magnificó durante el modelo de sustitución de importaciones y la creciente insuficiencia dinámica. Los años ochenta constituyen un periodo de transición hacia una nueva configuración de la estructura económica mundial y de las relaciones de interdependencia que se dan en su interior.

Previo al inicio de esta década, en la mayoría de los países industriales se presentó una reducción en el crecimiento de la productividad, unida a una serie de fenómenos exógenos como la formación de la Organización de Países Exportadores de Petróleo (OPEP), los consecuentes choques petroleros y la elevación del precio de los alimentos y otras materias

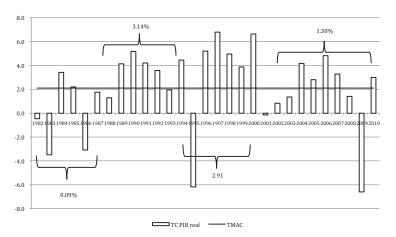
primas, que generaron un entorno conflictivo, al que se agregaban los problemas monetarios y financieros como consecuencia de la quiebra del Sistema de Bretton Woods.

Sumado a lo anterior, la economía mundial observó una creciente liquidez generada por el reciclaje de los petrodólares y por las escasas oportunidades de inversión en los países industriales. La abundancia de dinero se convirtió en crecimiento de la oferta de crédito en los mercados financieros mundiales, que ya para entonces se encontraban plenamente integrados. Para algunos países la abundancia de recursos se transformó en inversión extranjera directa; en otros, en un crecimiento de la deuda externa. Esta serie de sucesos expresa las rupturas que afectaron la dinámica del capitalismo en la década de los setenta y proporcionan un marco para entender los procesos de estancamiento con inflación observados en los países industriales y de crecimiento basado en el crédito externo y/o IED en los países en desarrollo como México (Talavera y Avilés, 1989: 17-19).

Los acontecimientos ocurridos en la economía mundial modificaron las condiciones reales vigentes, pero quizá más importante que ello es que alteraron las ideas prevalecientes en relación a las políticas económicas que debían aplicarse para contrarrestar sus efectos sobre la estructura productiva. En muchos países se abandonan las políticas keynesianas de estímulo a la demanda agregada, sustituyéndolas por políticas monetarias y fiscales restrictivas. Los años ochenta marcan el inicio, sin duda, del Consenso de Washington en naciones en desarrollo comprometidas con el Fondo Monetario Internacional y el Banco Mundial, debido a los créditos obtenidos. Es el origen de una nueva época para la economía mundial.

De acuerdo con el marco teórico del crecimiento establecido en los capítulos precedentes, se puede aseverar que el estancamiento económico prevaleciente en la mayoría de los países en desarrollo de aquellos años, en especial en México, responde a varios factores; por un lado, la recesión del mundo industrializado a principios de la década y la debilidad en la recuperación del gasto interno tanto en Europa como en Japón redujeron su demanda de exportaciones; afectaron también los cambios en los procesos tecnológicos y el incremento del peso relativo del sector servicios en las economías avanzadas. Los países dependientes de las exportaciones de materias primas fueron de los más afectados debido a que al cambio de una situación inflacionaria a una desinflacionaria de los setenta a los ochenta, modificó negativamente sus términos de intercambio.

Finalmente, la revaluación del dólar, a partir de 1982, aumentó la carga real de la deuda denominada en dólares de estos países. La tremenda elevación de las tasas de interés nominales y reales a principios de los ochenta tuvo el mismo efecto. Estos dos factores debilitaron la credibilidad de los países fuertemente endeudados, cuyo acceso a los mercados internacionales quedó interrumpido de manera abrupta hacia finales de 1982 (Talavera y Avilés, 1989: 24). Estos elementos explican el deterioro productivo que sufrieron los países en desarrollo en la década de los ochenta y refuerzan la idea de generar un proceso de industrialización con fuerte contenido y respaldo en el mercado nacional para evitar la tendencia al estancamiento.


2.3.1 Estancamiento económico en México

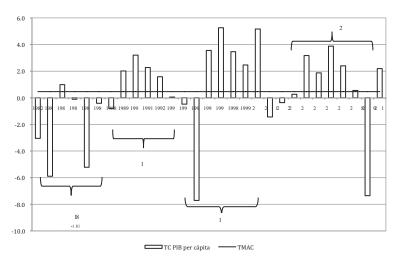
Después de una etapa de crecimiento sostenido, la economía mexicana vive desde principios de los años ochenta hasta la actualidad bajo un contexto de bajas tasas o estancamiento. Al graficar las tasas de crecimiento del PIB real se observa un promedio anual de 0.09% para el periodo 1982-1987; 3.14% para 1988-1993, para 1994-2000 de 2.91% y finalmente para el 2000-2010 fue de 1.30%; para todo el periodo 1982-2010, la economía apenas ha logrado crecer un 2.1% promedio anual contra un 6.33 % logrado de 1940 a 1970.

La gráfica 2.5 pone en evidencia el estancamiento de largo plazo sufrido. A pesar de observarse un crecimiento significativo para algunos años, la magnitud de las crisis y retrocesos redujeron los posibles impactos positivos de largo plazo; la economía crece y se detiene constantemente.

Parte de la explicación al "bache" del periodo obedece a situaciones coyunturales de origen externo y/o interno, como en los primeros años de los ochenta o como sucede ahora dada la crisis financiera mundial iniciada en el segundo semestre del 2008 en Estados Unidos de Norteamérica y la epidemia del virus AH1N1 del primer semestre del 2009. Sin embargo, la ralentización del crecimiento global, de acuerdo con el marco teórico expuesto, es de tipo estructural, plenamente vinculada a la falta de vigor de la productividad manufacturera, que no crece al ritmo que debería.

Gráfica 2.5 Tasas de crecimiento anuales del PIB real y promedio del periodo

^{*} El dato para el 2009 es un estimado y el del 2010 un pronóstico.


Fuente: elaboración propia con datos del INEGI.

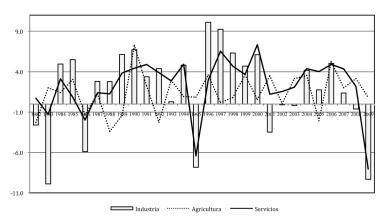
El crecimiento económico del país ha sido totalmente insuficiente durante estos veintiocho años. Están a punto de cumplirse tres décadas perdidas en la materia. En la gráfica 2.5 se observa que después de un periodo de estancamiento pleno, se recupera relativamente la estabilidad de 1987 a 1994, aunque se mantiene la insuficiencia; después, de 1994 al 2000 aunque se crece notablemente en 1997 y en el último año, el crecimiento en promedio anual se reduce, dicha reducción permanece hasta el presente. Desde el 2001 se experimenta una nueva etapa de estancamiento, muy parecida a la que prevalecía a principios de los ochenta.

Al analizar las tasas de crecimiento del PIB por persona (gráfica 2.6), se observa una situación todavía peor. En el periodo 1982-1987 la economía decreció en términos reales 1.81%, siendo 1982, 1983 y 1986 años terriblemente críticos, fueron retrocesos en el nivel de producción por persona que con dificultad se recuperaron, la primera etapa del nuevo modelo de largo plazo presentó signos de evidente deterioro. Para 1988-1993 el crecimiento medio anual del producto per cápita apenas fue de 1.5% real, 1.64% del 1994 al 2000 y de 0.42% del 2000 al 2010, de esta forma, de 1982 al 2010 el promedio anual de crecimiento fue de 0.46% muy por debajo del presentado de 1940 a 1970 que fue de 3.02%.

Desde una perspectiva de largo plazo, existe un proceso de estancamiento o bajas tasas de crecimiento del producto generado por la economía mexicana. Aunque también debe reconocerse la presencia de incrementos significativos en los años 1996, 1997, 1998, 2000 y 2006, los cuales resultan insuficientes, ya que van siempre acompañados de reducciones de carácter crítico, sobre todo en 1995 y 2009. En casi treinta años la producción por persona prácticamente no se ha modificado, ha estado estancada.

Gráfica 2.6 Tasas de crecimiento anuales del PIB per cápita y promedios por periodo

* El dato del 2009 es un estimado y el del 2010 un pronóstico.


Fuente: elaboración propia con datos del INEGI y el CONAPO.

Para Hausmann, Pritchett y Rodrik (2005) una economía que durante un determinado periodo de tiempo es incapaz de sostener un ritmo de crecimiento del PIB per cápita por encima del 3% debe ser considerada como estancada. El estancamiento es definido por estos autores como una situación en la cual el crecimiento económico es despreciable o negativo.

Una secuencia ininterrumpida de crecimiento pobre o negativo es lo que de aquí en adelante se denomina estancamiento económico. Esto es precisamente lo que ha estado ocurriendo en la economía mexicana durante los últimos años. De especial relevancia es el periodo 1994-2010, ya que se consolida el Modelo de Apertura y Estabilización Macroeconómica (MAEM) con la operación del Tratado de Libre Comercio (TLC).

Las bajas tasas de crecimiento económico han provocado que la economía nacional se rezague frente al resto del mundo, principalmente Estados Unidos, su mayor socio comercial. Con datos de Moreno-Brid y Ros (2009:261) se tiene que, mientras en 1981 el PIB per cápita de México representaba el 35.6% del americano, para el 2003 representaba el 24.6%, para el 2005 el 25% y para el 2009 el 22%. La pérdida de competitividad como producto del estancamiento es evidente.

Con relación al promedio mundial, el PIB per cápita de México representaba el 148.1% en 1981, el 109.5% en 2003 y el 110.4% en 2006; respecto a América Latina significaba el 125.4% en 1981, el 123.4% en 2003 y el 118.9% en 2006; respecto al Oeste de Europa el 50.9% en 1981, el 35.8% en 2003 y el 37.2% en 2006; finalmente, con relación a Asia representaba el 322.3% en 1981, el 161% en 2003 y el 137.8% en 2006. En la carrera por el crecimiento económico y el desarrollo, México se ha quedado tremendamente rezagado.

Gráfica 2.7 Crecimiento por sector de actividad económica

Fuente: elaboración con datos del Banco de Información Económica del INEGI.

En línea con lo expuesto en el primer capítulo, en la investigación se tiene un gran interés en el comportamiento de

^{*} Los datos del 2009 son preliminares.

los diversos sectores de actividad económica, particularmente el manufacturero. La evolución del crecimiento económico sectorial se muestra en la gráfica 2.7 y el cuadro 2.5. Los datos revelan que durante el periodo 1982-2009 se observó una participación cada vez menor del sector agropecuario, de 6.3% en 1982 pasó a 5.4% en el 2009; mientras tanto el sector industrial (incluye manufacturas, construcción y electricidad, gas y agua) pasó de 24.9% de participación a 23.2%, con lo que se contrajo cerca de dos puntos porcentuales; las manufacturas representaban 17% del PIB en 1982 y 16% en el 2009; el sector de los servicios incrementó su participación al pasar de 62.7% a 65.9%.

La gráfica 2.7 muestra también la elevada correlación que existe entre el comportamiento de las tasas de crecimiento del PIB total y las del PIB industrial y de servicios; el PIB agropecuario tiene un comportamiento diferente, lo que responde a su desarticulación con el resto de sectores y a que su producción está sujeta a los cambios climáticos que se presentan durante el año.

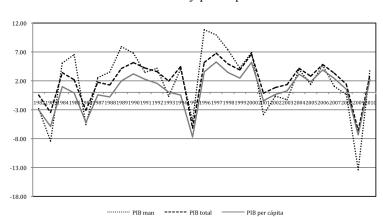
A nivel sectorial, para todo el periodo, el sector de mayor crecimiento fue el de los servicios, seguido del industrial y manufacturero. El crecimiento a nivel sectorial es reducido para superar el estancamiento. Los datos confirman la insuficiencia dinámica manufacturera y la paulatina desindustrialización de la economía mexicana.

De 1982 a 1987 el decrecimiento del PIB per cápita fue de 1.8%, el de la industria de 0.59% y el de las manufacturas de 0.11%, mientras los servicios y el sector agropecuario crecieron. Del 2000 al 2009, el crecimiento del PIB per cápita fue de apenas un 0.42%, la industria decreció un 0.21% y las manufacturas un 0.96%, mientras los servicios crecían 1.59%. La información presentada confirma, con carácter tentativo, el trascedente rol jugado por el sector industrial manufacturero.

Las manufacturas y la industria en general consiguen sus mejores tasas de crecimiento durante los subperiodos: 1988-1993 y 1994-2000, los mismos en los que el ritmo de crecimiento del PIB total y per cápita son más elevados, este resultado no es una coincidencia.

La economía mexicana se encuentra estancada, tanto en términos de PIB total como per cápita y junto a esto se observa un sector manufacturero que prácticamente no crece (insuficiencia dinámica) y un sector servicios que se incrementa (terciarización).

En correspondencia con el marco teórico expuesto, se sabe que la mayor participación del comercio y los servicios, sin un aumento de la planta industrial, implica una reducción del crecimiento o bien un crecimiento temporal y ficticio, por la vía de una mayor dependencia de bienes de consumo, intermedios y de capital que deben ser importados para hacer frente a la creciente demanda; los servicios, a pesar de su relevancia, no son el motor del crecimiento en México.


Cuadro 2.5 Estructura porcentual del PIB y tasas medias anuales de crecimiento

	Agropecuario	Industrial	Manufacturas	Servicios
1970	11.6	29.7	23.3	53.9
1982	6.3	24.9	17.0	62.7
TMAC 1982-1987	1.05	-0.59	-0.11	0.33
1988	6.4	24.2	17.1	63.6
TMAC 1988-1993	1.41	3.44	3.54	3.30
1994	5.6	24.8	17.4	64.5
TMAC 1994-2000	1.35	3.92	4.76	2.58
2000	5.0	26.5	19.8	63.0
TMAC 2000-2009	1.91	-0.21	-0.96	1.59
2009	5.4	23.2	16.0	65.9
TMAC 1982-2009	1.51	1.83	1.88	2.29

^{*} Los datos del 2009 son preliminares.

Fuente: elaboración con datos del Banco de Información Económica del INEGI.

Continuando con la gráfica 2.8, interesa insistir que los años en los que se presenta el mejor comportamiento del producto per cápita (1996-2000), son también los años en los que el PIB industrial manufacturero registra sus mayores tasas.

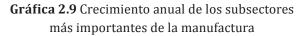
Gráfica 2.8 Crecimiento anual de la manufactura, PIB total y per cápita

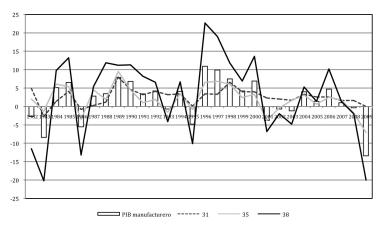
Fuente: elaboración con datos del Banco de Información Económica del INEGI.

Existe una alta correlación entre el comportamiento del PIB industrial y el PIB total de la economía, el coeficiente de correlación entre las series es de 0.93, lo que aporta evidencia preliminar de la importancia que tiene el sector industrial para el crecimiento o estancamiento del producto.

Al considerar exclusivamente al sector manufacturero y comparar sus tasas de crecimiento para el periodo 1982-2009 con las del del producto total de la economía mexicana se encuentra un coeficiente de correlación de 0.88 (véase gráfica 2.8).

Dos años atípicos son el 2002 y el 2003, en los cuales el PIB manufacturero presentó valores negativos mientras el


^{*} Los datos a partir del 2009 son preliminares.


PIB total se incrementó ligeramente. Previo a esto, en el 2001 la caída en el PIB manufacturero fue mucho mayor que la del PIB total, algo similar ocurrió en 1982, 1983, 1986, 1993 y 2009. La economía, en lo general, se mueve al ritmo que lo hacen las manufacturas, algo similar ocurre con la productividad (medida a través del PIB per cápita), note que las tasas de crecimiento son mucho más reducidas que las del PIB total y manufacturero.

De acuerdo con las cifras disponibles en el sistema de cuentas nacionales del INEGI, entre 1982 y el 2009, el valor absoluto del producto generado en las manufacturas pasó de 173 609 millones de pesos reales a 287 694 millones de pesos, un incremento de 165% en 27 años; ¹⁸ en términos anuales medios, las manufacturas crecieron 1.88% para todo el periodo, -0.11% de 1982 a 1987, 3.54% de 1988 a 1993, 4.76% del 1994 al 2000 y -0.96% de 2000 a 2009; se confirma con esto que el periodo de mejor comportamiento del sector manufacturero coincide con el de mejor ritmo observado por el PIB total y per cápita de la economía.

A nivel de subsector de la manufactura, los más relevantes en función de su participación son: productos alimenticios, bebidas y tabaco (31) que mantuvieron durante todo el periodo una participación promedio de 26%; productos metálicos, maquinaria y equipo (38) con una participación promedio de 27%; y finalmente, el subsector de sustancias químicas, derivados del petróleo, productos de caucho y plástico (35) participó con el 15% en promedio. Los tres subsectores mencionados aportaron poco más del 70% del producto manufacturero para todo el periodo (véase gráfica 2.9 y cuadro 2.6).

De 1940 a 1970 las manufacturas crecieron en términos absolutos un 840%, con lo que para el periodo 1982-2009 se tiene una contracción relativa o desindustrialización.

^{*} Los datos del 2009 son preliminares.

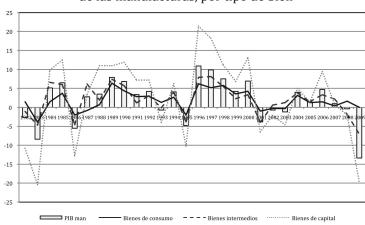
Fuente: elaboración con datos del Banco de Información Económica del INEGI.

Los tres subsectores presentan un elevado componente cíclico característico de toda la economía mexicana; el subsector 38 es el que observó el mayor crecimiento relativo. Tres cosas más: la primera es que el crecimiento que presentan año con año es insuficiente ante las caídas severas que se registran en los años críticos; dos, el crecimiento es muy inestable, no muestra una tendencia creciente de largo plazo; tercero, la actividad manufacturera se concentra en apenas tres subsectores.

El subsector de productos alimenticios, bebidas y tabaco (31), conformado por productos que implican en su mayoría un bajo componente relativo de innovación y progreso tecnológico; el subsector 35 integrado por productos derivados del petróleo y el 38 integrado en una buena parte por empresas manufactureras de capital extranjero (e.g. industria automotriz, electrónica), las cuales integran pocos insumos nacionales en su producción y distorsionan la creación y fortalecimiento de cadenas productivas locales. El sector manu-

facturero en México, de forma preliminar, puede decirse se encuentra concentrado y poco diversificado, lo cual contribuye a la involución y bajas tasas de crecimiento del producto y el empleo de la economía mexicana.

Cuadro 2.6 Participación y crecimiento por subsector manufacturero


	Manufacturas	31	35	38
1982	100	26.5	15.5	23.0
TMAC 1982-1987	-0.11	0.33	1.79	-1.91
1987	100	27.2	17.3	20.6
TMAC 1988-1993	3.54	3.24	2.06	4.48
1993	100	27.0	15.9	24.6
TMAC 1994-2000	4.76	3.0	3.41	8.49
2000	100	23.8	14.5	32.1
TMAC 2000-2009	-0.96	1.75	-0.40	-2.09
2009	100	31.0	15.3	28.6
TMAC 1982-2009	1.84	2.41	1.78	2.63

^{*} Los datos del 2009 son preliminares.

Fuente: elaboración con datos del Banco de Información Económica del INEGI.

En aras de generar una interpretación alternativa de la evolución de la actividad manufacturera en México, en la gráfica 2.10 se exponen las tasas anuales de crecimiento por tipo de bien: bienes de consumo, se agrupan en esta categoría los subsectores de: productos alimenticios, bebidas y tabaco (31); textiles, prendas de vestir e industrias del cuero (32) e industrias de la madera y productos de la madera (33); bienes intermedios, papel, productos de papel, imprenta y editoriales (34); sustancias químicas, derivados del petróleo, productos de caucho y plástico (35); productos de minerales no metálicos, excepto derivados del petróleo y carbón (36) e industrias

metálicas básicas (37) y bienes de capital, productos metálicos, maquinaria y equipo (38) y otras industrias manufactureras (39).

Gráfica 2.10 Crecimiento anual de las manufacturas, por tipo de bien

Fuente: elaboración con datos del Banco de Información Económica del INEGI.

Lo que se ha dado por llamar bienes de consumo participaba en 1982 con el 42% del producto manufacturero, los bienes intermedios 33% y los bienes de capital con el restante 25%; para el año 1996 esos porcentajes eran de 38, 33 y 29% respectivamente; mientras tanto, para el 2009, fueron de 36, 33 y 31%, con lo que los bienes de capital ganaron notoriamente en participación a costa de la reducción observada en la producción de bienes de consumo.

La gráfica 2.10 deja ver que los bienes de capital crecen por encima del resto, pero debe también advertirse que sus caídas son mayores en 1983, 1986, 1995, 2001, 2002, 2003 y 2009; en general la tasa media anual de crecimiento de la producción de bienes de capital es de 2.49% para el periodo 1982-2009, de 1.71% para los bienes intermedios y de

^{*} Los datos del 2009 son preliminares.

1.91% para los bienes de consumo. Por otra parte, al calcular el grado de correlación entre las series de crecimiento del PIB total y crecimiento por tipo de bien se encuentra que es de 0.86 para los bienes de capital, 0.82 para los bienes intermedios y 0.83 para los bienes de consumo.

Los datos hasta ahora aportados indican que en los últimos años se ha dado una paulatina reducción del ritmo de crecimiento manufacturero, particularmente en relación a lo que se producía en el periodo 1940-1970. Se ha puesto en evidencia la existencia de un proceso de estancamiento económico y su correlación con la insuficiencia dinámica manufacturera, además se destaca que la entrada en operaciones del TLCAN tuvo un efecto efímero sobre el crecimiento.¹⁹

Con los datos del cuadro 2.7 es posible capturar parte del proceso de reconversión productiva que se ha generado en México; los principales indicadores de las empresas maquiladoras de exportación muestran incrementos, lo que significa que gradualmente las manufacturas nacionales han perdido importancia como generadoras de empleo y producto, lo que se corresponde con una menor participación del Estado en la promoción de inversiones y generación de incentivos para la actividad industrial y con la paulatina apertura de la economía, desregulación y fomento de la inversión extranjera directa.

Una mayor participación de la maquila implica condenar al país a funcionar como una plataforma de exportación de productos que generan muy poco valor agregado, que a más de cuarenta años de su existencia no han permitido generar

¹⁹ Para Moreno-Brid y Ros (2009: 189) aunque la estrategia ha sido exitosa al aumentar el volumen de exportaciones, también ha incrementado masivamente las importaciones. Las exportaciones manufactureras son muy dependientes de las importaciones y tiene un muy bajo contenido nacional además de débiles enlaces con los proveedores locales. De hecho, 70% de las exportaciones manufactureras son producidas a través de procesos de ensamble con insumos importados que entran bajos esquemas impositivos preferenciales (maquiladoras), de aquí la explicación al bajo crecimiento.

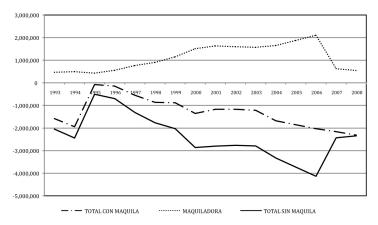
una industria nacional que les provea sus principales insumos, que de manera directa y/o indirecta ha fomentado el rompimiento de las escasas cadenas productivas con las que se contaba hasta antes de la apertura comercial. Las maquiladoras conforman un moderno sistema de economía de enclave y de explotación.

Cuadro 2.7 Principales indicadores de las empresas maquiladoras de exportación

	Producción	VAB	PO	VAM	PBM
1990	50,163,134	9,886,524	451,169	4.8	7.9
1991	52,804,962	9,315,454	434,109	4.4	7.9
1992	60,732,377	11,014,147	503,689	5.0	8.7
1993	68,158,225	11,529,234	526,351	5.2	9.8
1994	87,375,493	12,768,412	562,334	5.6	11.8
1995	107,344,659	14,173,581	621,930	6.5	14.9
1996	132,810,723	16,964,939	748,262	7.0	16.4
1997	156,732,589	19,313,027	903,736	7.3	17.5
1998	189,332,209	21,564,693	1,014,023	7.6	19.4
1999	226,161,520	24,242,700	1,143,499	8.2	21.7
2000	278,541,058	27,577,417	1,291,498	8.7	24.2
2001	263,480,185	24,904,093	1,202,954	8.2	23.8
2002	270,438,513	22,322,449	1,071,467	7.4	24.2
2003	276,510,416	22,627,455	1,069,172	7.6	24.8
2004	316,326,591	24,367,250	1,115,456	7.8	26.7
Desviación estándar	96,213,398	6,256,419	305,224		
Media	169,127,510	18,171,425	843,977	7.0	17.0
Tasa media anual de crecimiento	14.06	6.66	6.68		

Los datos de producción y valor agregado bruto (VAB) se encuentran en miles de pesos de 1993.

PO: es la población ocupada remunerada; VAM: es el porcentaje de valor agregado de las maquiladoras respecto al total de las manufacturas y PBM: es el porcentaje del producto bruto total de las maquiladoras respecto al total manufacturero.


Fuente: elaboración con datos del Banco de Información Económica del INEGI.

Las maquiladoras, desde un punto de vista jurídico, operan bajo un régimen de excepción que permite la integración temporal de materias primas con el objetivo de transformarlas y devolverlas a su país de origen. Representan un proceso industrial o de servicio que implica transformación, elaboración o reparación de mercancías de procedencia extranjera importadas permanentemente o temporalmente para su exportación posterior. En su definición se encuentra su inviabilidad como estrategia de desarrollo industrial.²⁰ Su crecimiento implica desindustrialización.

Un indicador adicional de la insuficiencia dinámica del sector manufacturero mexicano viene dado por el saldo de la balanza comercial manufacturera con maquila y sin maquila. En la gráfica 2.11 se aprecia que el saldo comercial de las maquiladoras es positivo y con tendencia creciente para todo el periodo, sólo hasta el 2006 se reduce ligeramente. Cuando se incorpora la actividad maquiladora en la balanza comercial manufacturera el déficit se reduce sensiblemente, el caso contrario cuando se elimina. De aquí que el nombre del actual modelo debería ser "secundario importador". Obsérvese también como el déficit se reduce entre 1995 y 1997

20 Dado que el objetivo central de la tesis no es analizar a las maquilas, se recomienda la lectura de la amplia literatura existente en las principales bases de datos académicas; en especial por el carácter de su trabajo y su vinculación con el tema abordado aquí, interesa el artículo de Mejía (2003), este autor usando econometría de series de tiempo, encuentra evidencia preliminar sobre la independencia del ciclo de la producción maquiladora respecto a la producción industrial del país. Más aún, encuentra para algunos subperiodos que ambas siguen comportamientos contrarios. Carrillo (2007: 668) apunta que "... las pruebas de los factores estructurales y coyunturales que reflejan el agotamiento de la maquila son, entre otros, un grave descenso de la actividad desde finales de 2000 como consecuencia de la recesión en Estados Unidos, la escasa vinculación con la planta productiva nacional (5%), un empleo mayoritario de trabajadores de producción (78%) con bajos salarios relativos (2.70 dólares por hora) y el deterioro ambiental". Aunque por otro lado Carrillo reconoce la existencia de un proceso de escalamiento industrial en la maquiladora que tiene amplios efectos positivos sobre la competitividad de las mismas, sin que ello necesariamente beneficie a los territorios, ya que a fin de cuentas siguen siendo maquiladoras.

justo cuando el tipo de cambio se devalúa, resultado de interés para la formulación de política económica.

Gráfica 2.11 Saldo de la balanza comercial manufacturera

Fuente: elaboración con datos del Banco de Información Económica del INEGI.

Diversos estudios econométricos confirman que en los pasados 15 o veinte años la economía mexicana ha incrementado su dependencia estructural de las importaciones, especialmente el sector manufacturero.²¹ La elasticidad ingreso de la demanda de importaciones de largo plazo de la economía mexicana se ha incrementado sensiblemente, actualmente su valor está cercano a 3. Lo que significa que si el ingreso real sube a un ritmo de, digamos 5%, las importaciones lo harían a un 15% obligando a que las exportaciones crezcan similarmente para mantener el saldo comercial en niveles tolerables, si a esto se le agrega un movimiento adver-

²¹ Los estudios que evalúan la restricción de la balanza de pagos sobre el crecimiento tienen su origen en los trabajos de Harrod sobre el multiplicador dinámico del comercio internacional y algunos desarrollos en la CEPAL realizados por Raúl Prebisch, y desde los años setenta los trabajos de Tony Thirlwall. Para el caso mexicano destacan los estudios empíricos de Guerrero de Lizardi (2003, 2006), Moreno-Brid (2001), Ocegueda (2000), Pacheco-López (2003) y Fuji (2000).

so en los términos de intercambio, la expansión de las exportaciones tendría que ser muchas veces mayor. De mantenerse en el largo plazo este elevado valor de la elasticidad ingreso de la demanda de importaciones, la economía se enfrentará a una restricción de su crecimiento por la balanza de pagos, lo que incrementará su dependencia estructural (Moreno-Brid y Ros, 2009: 190).

2.3.2 Estancamiento del empleo en México

Los empleos generados cada año desde 1982 al 2008 han sido insuficientes para cubrir la demanda, a pesar de los constantes discursos a favor de la creación de más fuentes laborales. Los resultados demuestran que ningún gobierno del MAEM ha podido satisfacer esta necesidad económica básica. En el cuadro 2.8 se aprecia que incluso se han perdido empleos cada año en lugar de generarlos, así ha sido en 1982, 1986, 1995, 2001, 2003 y 2008 para el caso del sector privado y 1992, 1993, 2001, 2002, 2003 y 2005 para el sector público.

Para el 2009, según las estimaciones de Torres (2009), la pérdida de empleos formales en los primeros cinco meses rebasaba la cantidad de 309 mil, para finales del año este autor pronostica una caída de más de 700 mil. Las manufacturas podrían haber contribuido con unos 205 mil empleos, la construcción con 85 mil, el comercio con 150 mil, los servicios con 220 mil y los restantes 40 mil las actividades agropecuarias, mineras, de electricidad y agua. En el 2010 es posible que la generación de empleos continúe estancada, como resultado de la lenta recuperación de la demanda externa y la ausencia de condiciones internas para ofertar el número de plazas que anualmente se necesitan.

El cuadro 2.8 muestra como paulatinamente el sector público ha reducido las ofertas laborales, lo cual tiene diferentes interpretaciones, ya que por un lado es posible que esto redunde en una mayor eficiencia, pero por el otro significa

que ante la pérdida de dinamismo del sector privado no existe en la economía formal mecanismo de compensación para los empleos necesarios, lo que conduce a la población directamente a la economía informal o a la migración.

Cuadro 2.8 Empleos generados cada año

Año	Asegurados perma- nentes del IMSS (A)	Sector público (B)	Empleo Formal (A + B)
1982	-75,918	211,636	135,718
1983	22,583	274,856	297,439
1984	571,274	243,076	814,350
1985	501,793	105,858	607,651
1986	-146,631	51,984	-94,647
1987	771,536	29,347	800,883
1988	159,962	279,014	438,976
1989	1,009,280	7,449	1,016,729
1990	837,676	22,927	860,603
1991	520,000	28,724	548,724
1992	55,000	-178,443	-123,443
1993	-56,000	-56,345	-112,345
1994	245,000	80,367	325,367
1995	-181,000	37,786	-143,214
1996	804,000	31,317	835,317
1997	882,000	100,643	982,643
1998	303,504	77,795	381,299
1999	488,071	3,976	492,047
2000	397,439	2,031	399,470
2001	-313,102	-2,770	-315,872
2002	19,372	-12,022	7,350
2003	-97,189	-10,857	-108,046
2004	227,466	64,555	292,021
2005	184,954	-69,773	115,180
2006	478,365	84,193	562,558
2007	465,432	67,978	533,410

Continúa...

Año	Asegurados perma- nentes del IMSS (A)	Sector público (B)	Empleo Formal (A + B)
2008	-59,328	75,424	16,096
promedio 1982-1987	274,106	152,793	426,899
promedio 1988-1993	420,986	18,953	348,207
promedio 1994-2000	419,859	47,702	467,561
promedio 2000-2008	144,823	22,084	166,907

Fuente: elaboración con datos del IMSS e INEGI.

En promedio anual de 1982 a 1987 se crearon 274 106 plazas en el sector privado, 152 793 en el sector público y 426 899 en total; en 1987-1993 se incrementó la creación en el sector privado pero se redujo drásticamente en el sector público; en 1994-2000 el promedio de empleos fue de 419 859 en el sector privado y 47 702 en el público; para el periodo 2000-2008 el empleo presenta un franco estancamiento, al generarse en promedio 144 823 empleos cada año en el sector privado y 22 084 en el público, 166 907 empleos en todo el sector formal; la pregunta es ¿a dónde van a parar todos los mexicanos que se agregan anualmente a la población económicamente activa? Seguramente muchos de ellos engrosan las filas de la migración hacia Estados Unidos de Norteamérica, otra parte se une a la economía informal, al subempleo y, por supuesto, se dedica a delinquir, en solitario o en grupos, organizada o desorganizadamente.

El empleo en México muestra una gran volatilidad y, al igual que el crecimiento del producto, es insuficiente para cubrir las necesidades de más de un millón de personas que se agregan cada año al mercado de trabajo, el cual, como resultado del estancamiento, se encuentra deteriorado, lo que se asocia, entre otros factores, a la falta de crecimiento del sector manufacturero.

La creciente precarización del empleo, sobre todo en los últimos ocho años, se exhibe en el cuadro 2.9; mientras en el 2000 la población ocupada en el sector informal y subocupada (empleo precario) era de más de 13 millones de personas, para el 2009 se estima en poco más de 16 millones, de las cuales 612 003 se encontraban subocupadas en el sector manufacturero; la subocupación en el sector manufacturero pasó de representar el 20.9% del total en el 2000 al 15.1% en el 2009. Lo que las cifras demuestran es la existencia de un proceso más allá del estancamiento en materia de empleo, una etapa crítica de desempleo, subocupación e informalidad.

Cuadro 2.9 Precarización del empleo en México

Año	POI	POS	POS man	POS man (% del total)	Empleo precario
2000	10,354,145	2,732,650	571,085	20.9	13,086,795
2001	10,642,961	2,534,235	463,332	18.3	13,177,196
2002	11,037,333	2,674,653	475,250	17.8	13,711,986
2003	11,456,603	3,150,604	536,074	17.0	14,607,207
2004	11,540,197	3,105,265	451,662	14.5	14,645,462
2005	11,626,576	2,831,865	381,161	13.5	14,458,441
2006	11,421,546	3,074,226	438,006	14.2	14,495,772
2007	11,766,106	2,992,806	423,013	14.1	14,758,912
2008	11,857,285	3,014,899	414,613	13.8	14,872,184
2009	12,221,930	4,029,159	612,003	15.1	16,251,089

^{*} Las cifras del 2009 son preliminares.

POI: población en el sector informal; POS: población subocupada y POS man: subocupada en las manufacturas.

Fuente: elaboración con datos del Banco de Información Económica del INEGI.

El empleo en el sector manufacturero se ha reducido paulatinamente, de hecho entre 2000 y 2009 presentó un decrecimiento promedio anual de 1.25%, mientras la población ocupada total creció un 1.30%. El empleo en las manufacturas como porcentaje del empleo total ha observado una trayectoria descendente, al pasar de 19.5% en 2000, a 18.4% en 2001, 17.7% en 2002, 17.4% en 2003, 17.3% en 2004, 16.6% en 2005, 15.9% en 2008 y 15.1% en el 2009, las cifras exhiben nuevamente la insuficiencia dinámica de las manufacturas.

La evidencia empírica es favorable al marco teórico utilizado como guía analítica, ya que del 2000 al 2009 se reduce la producción manufacturera y también desciende la creación de empleos en las manufacturas. En la gráfica 2.12 se exhibe la elevada correlación entre las series de PIB y población ocupada en las manufacturas.

10.00
5.00
0.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10

Gráfica 2.12 Crecimiento de la población ocupada y el PIB manufacturero

Fuente: elaboración con datos del Banco de Información Económica y Estadísticas Históricas del INEGI.

La población ocupada total era de más de 38 millones de personas en el 2000, de las cuales el 18% estaba en el sector primario, el 28% en el sector secundario y un 42% en las actividades terciarias; para el 2004 la población ocupada sumaba más de 40 millones, cuya participación en los tres sectores era de 16%, 26% y 48%, respectivamente; para el 2009 la población ocupada alcanzó a más de 43 millones, dis-

^{*} Las cifras del 2009 son preliminares.

tribuidos un 13% en las actividades primarias, 24% en las secundarias y 52% en las terciarias.

Durante los últimos diez años ha crecido el empleo en las actividades comerciales y de servicios, mientras se reduce en las manufacturas y el sector agropecuario. El país se ha terciarizado gradualmente, lo que se correlaciona con el estancamiento económico. La creciente importancia de los servicios, sin un incremento correspondiente en la participación manufacturera condena al país a padecer tasas despreciables o negativas.

A partir de la investigación realizada se comprobó que existe en México desde hace poco más de un cuarto de siglo, un marcado proceso de estancamiento o para ser más precisos bajas tasas de crecimiento, que se traducen en una insuficiente capacidad de generación de empleos ante una creciente demanda del mismo, dado el aumento poblacional. La insuficiencia dinámica ha provocado una reducción en el bienestar de millones de mexicanos.

Los resultados económicos obtenidos durante los años de operación del MAEM dan cuenta de la catástrofe. De 1982 a 2010 el PIB total creció un 2.1% promedio anual, el PIB per cápita 0.46%; entre 1982 y 2008 se creó un promedio anual de 354 306 empleos en el sector formal de la economía; la tasa de crecimiento del PIB manufacturero de 1982 a 2009 fue de 1.88% promedio anual. Entre 2000 y 2009 la población ocupada total creció un 1.30% promedio anual, mientras que la ocupada en las manufacturas se redujo un 1.25%. Finalmente, el empleo precario pasó de 13 millones a poco más de 16 millones.

2.3.3 Algunas explicaciones al estancamiento económico

Al igual que sucede con otras problemáticas, el estancamiento económico prevaleciente en México ha recibido diferentes interpretaciones, algunas de las cuales se exponen a continuación con la intención de generar los suficientes elementos como para capturar la naturaleza y origen preciso del problema, esto permitirá tomar las medidas apropiadas para su tratamiento. La revisión de la literatura es más que necesaria para generar un diagnóstico completo y adecuado.

Para Guillén (2000) la causa principal detrás del estancamiento está en las políticas que denomina neoliberales, ya que siguen al pie de la letra los dictados del Consenso de Washington, sin considerar las particularidades y retos de la economía mexicana; en su opinión, tales políticas son de carácter procíclico, con lo que lejos de corregir el bajo ritmo de crecimiento terminan profundizándolo.

Siguiendo una línea de argumentación similar, Calva (2001) considera que la causa del problema es la dependencia de la economía mexicana respecto al ciclo económico estadounidense, sumada a la estrategia macroeconómica recurrentemente aplicada en México desde tiempos de Salinas, que erige la estabilización de los precios en objetivo prioritario a ultranza.

Para Huerta (2004), no se cuenta con el financiamiento interno para el crecimiento y los flujos externos se reducen al dejar de ofrecer la economía condiciones de rentabilidad. A lo que se suman las políticas monetarias y fiscales de carácter restrictivo. De acuerdo con Perrotini (2004), el régimen de inversión productiva insuficiente que prevalece desde la crisis de la deuda externa, las políticas de ajuste, estabilización macroeconómica y cambio estructural, en combinación con los vacíos institucionales de la economía mexicana, propiciaron un ambiente macroeconómico adverso para la inversión productiva y, por tanto, una reducción de la tasa de acumulación de capital. La resultante pérdida de empleo y producto es la inevitable contraparte del éxito de las políticas antiinflacionarias.

Villarreal (2005) considera que, al agotarse el modelo de industrialización por sustitución de importaciones el gobierno instrumentó un modelo de Apertura, Liberalización y Pri-

vatización y Estabilización (ALPES) que junto con un tipo de cambio real apreciado y políticas contraccionistas exacerbó el desequilibrio externo de la economía mexicana lo que presiona a la baja la tasa de crecimiento económico.

Para Chávez (2007), la clave radica en la arquitectura del modelo neoliberal; plantea que la falta de crecimiento se debe al carácter secuencial de las políticas impuestas, las cuales consideran que primero tiene que consolidarse la estabilidad macro, después aspirarse a la expansión productiva y luego distribuirse socialmente los beneficios.

Loría (2007) concluye que las ineficientes, inadecuadas y mal encaminadas políticas para abrir la economía al comercio internacional, condujeron a un proceso de desindustrialización, lo que ha reducido la productividad total factorial.

En un trabajo reciente de María y Campos, Domínguez, Brown y Sánchez (2009), afirman, con base en un exhaustivo análisis histórico-estadístico, que el estancamiento obedece a las bajas tasas promedio de inversión en el sector productivo, así como al comportamiento que tuvieron diversas políticas clave como son la fiscal, monetaria, de tipo de cambio, financiera y de apertura exterior, en el marco de un modelo que privilegia la estabilidad macroeconómica y los equilibrios fiscales. Pero también a la ausencia de estrategias y políticas apropiadas en las esferas sectorial y regional.

Dos autores sumamente especializados en el tema, Moreno-Brid y Ros (2004), consideran que la causa del problema radica en la menor participación del Estado en actividades económicas relevantes, especialmente documentan la caída en la inversión en infraestructura como determinante próximo del lento crecimiento.

Tello (2007), con base en un análisis histórico de la economía mexicana asegura que el problema se debe al cambio de modelo económico, de uno con fuerte participación estatal y apoyo para el desarrollo industrial a otro que favorece al

mercado y se basa en las exportaciones de manufacturas con alto contenido de insumos importados.

La reducción del gasto público y en especial la inversión en infraestructura es, en Cruz (2007), la principal causa de la etapa actual de estancamiento.

Ros (2008), a su vez, indica que el determinante próximo del lento crecimiento de la economía mexicana es una baja tasa de inversión y cuatro factores la limitan: la reducida inversión pública, un tipo de cambio real apreciado desde 1990, el desmantelamiento de la política industrial durante el periodo de reforma y la falta de financiación bancaria.

Ibarra (2008) apoya esta hipótesis al sostener que la desaceleración en el crecimiento se debe a la atonía de la inversión como consecuencia de un tipo de cambio real sobrevaluado durante la desinflación, lo que se agrava por la merma a largo plazo de la razón PIB/capital.

En un libro reciente, Moreno-Brid y Ros (2009) sostienen que, de acuerdo con la teoría del crecimiento y el análisis histórico comparativo de la economía mexicana, el estancamiento responde a una baja tasa de acumulación de capital físico. Su argumento es que junto con la contracción del crédito bancario que siguió a la crisis de la mitad de los noventa, tres factores están reduciendo la inversión: el bajo nivel de inversión pública (principalmente en el área de infraestructura), un apreciado tipo de cambio real y el desmantelamiento de la política industrial durante el periodo de reforma. Aunado todo ello a una política económica para el crecimiento incorrectamente enfocada.

En un estudio seminal, Fuji (2000) concluye que la causa básica proviene del sector externo. En los últimos 25 años, toda fase de crecimiento ha generado de modo sistemático un déficit en la balanza en cuenta corriente que a la postre es imposible financiar con el ingreso de capitales. La alta elasticidad de las importaciones, rasgo tradicional de la economía, creció a raíz de la apertura externa. Ello se debió a que la

industrialización por sustitución de importaciones redundó en una base industrial considerable, pero que en gran parte no podía competir con los productos importados, por lo que sobrevivía al amparo de la protección. El acelerado desmantelamiento de ésta no permitió que la mayoría de las empresas industriales se pusiera en posición de afrontar las nuevas condiciones de mercado.

Así, los productos importados se apoderaron del mercado de bienes de consumo y, en particular, de intermedios y el de bienes de capital. Esta situación contribuyó a debilitar los encadenamientos entre las ramas de la manufactura, por lo que el crecimiento de la industria pasó a repercutir cada vez más directamente, y en forma más que proporcional, en las importaciones manufactureras. Esto ha ocurrido tanto en las ramas exportadoras como en las orientadas al mercado interno.

Apoyando a Fuji (2000), Guerrero de Lizardi (2003) demuestra que el incremento en la demanda de importaciones es mayor que el de las exportaciones, además de existir una alta dependencia del ciclo económico de Estados Unidos, todo lo cual redunda en una enorme fragilidad de la economía y detiene cualquier esfuerzo encaminado a fortalecer el crecimiento.

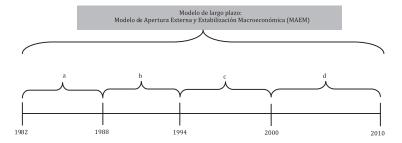
Para Puyana y Romero (2007), los factores causales del bajo crecimiento son: a) la desaceleración de la inversión privada nacional y la insuficiente inversión pública, b) la disminución del valor agregado nacional integrado en las exportaciones, c) la especialización mexicana en el ensamble de manufacturas para la exportación, d) la concentración de las exportaciones mexicanas en empresas extranjeras, y e) la sobrevaluación del peso frente al dólar (dado que Estados Unidos es el principal socio comercial).

Hasta aquí las investigaciones empatan adecuadamente con la interpretación desarrollada en el presente trabajo; sin embargo, existen otras explicaciones que difieren notablemente. Bajo un enfoque ortodoxo, Martínez, Tornell y Westermann (2004) concluyen que la liberalización y el crecimiento han generado un mayor crecimiento e inversión; no obstante, la falta de reformas estructurales y la prolongada escasez de crédito han creado cuellos de botella que lo han bloqueado y llevado a la disminución reciente de las exportaciones.

En tanto, Guerrero, López-Calva y Walton (2006) afirman que la concentración de la riqueza en el país es la responsable de las bajas tasas registradas. Algunas formas de concentración de la riqueza se asocian con un control extenso que distorsiona el funcionamiento de los mercados y el diseño de las políticas. Más aún, las instituciones económicas moldeadas por la influencia desigual en los últimos años se ubican en el centro del problema de crecimiento y competitividad que sufre México.

En Levy (2007) se encuentra una explicación diferente y polémica. Según este autor, los programas sociales disminuyen la productividad total de los factores, lo que se suma a los efectos de la menor inversión pública. Los programas sociales segmentan el mercado de trabajo, gravan el empleo formal asalariado y subsidian el empleo informal asalariado y no asalariado.

Dado el alto costo del crédito, los mayores costos del trabajo para las empresas formales, distorsionan la asignación de la inversión a favor del sector informal. Una hipótesis subsidiaria es que los programas sociales se financian en parte por la disminución de la inversión pública, en lugar de aumentar los impuestos, lo que limita la expansión de la infraestructura pública y de aquí el crecimiento.


Finalmente, Blecker (2007) considera que muchas de las fluctuaciones en el crecimiento del producto mexicano se explican por cuatro factores: a) los choques en los flujos financieros netos, b) precios internacionales del petróleo, c) tasa de crecimiento de la economía norteamericana y d) el valor real del peso o tipo de cambio.

2.3.4 Principales acontecimientos en la economía

Al periodo 1982 a la fecha se le ha denominado en la investigación como MAEM, caracterizado principalmente por la implementación de reformas tendientes a lograr una mayor apertura externa y eficiencia de los mercados, bajo el supuesto de que el crecimiento y la convergencia únicamente se alcanzan en economías desreguladas. El MAEM que las nuevas generaciones de mexicanos viven se caracteriza, como ya se ha puesto de manifiesto en la sección anterior, por el estancamiento tanto en los niveles de producto como de empleo, representa un rompimiento con el modo de acumulación y regulación experimentado de 1940 a 1980.

De hecho, la política aplicada desde 1982 ha reducido progresivamente la intervención estatal tanto en la reproducción de la fuerza de trabajo como en la inversión en infraestructura económica, dando más espacios al mercado y asumiendo que este último es el mecanismo más eficiente para la asignación de recursos (Lechuga, 2001: 98). En el cuadro 2.10 se presenta un resumen de los principales indicadores del actual periodo.

Figura 2.2 Modelos económicos de corto y largo plazo, 1982-2010

- a: Crecimiento cero
- b: Ajuste estructural
- c: Era TLCAN
- d: Estancamiento estabilizador

Fuente: elaboración propia.

Cuadro 2.10 Variables macroeconómicas básicas de México, 1982-2009

	PIB	Pobla-	PIB por	Inflación	Formaci de ca	ión bruta pitalb	Cons	Consumo totalb	Ahorro	Balance	Déficit
	TMAC	TMAC	TMAC	pro- medioa	TMAC	TMAC % del	TMAC	TMAC % del PIB	% del PIB	del PIBc	comercial
1982-2009	2.00	1.4	0.38	16.1	,	19.3		74.2	20.1	-2.9	-1,424,950
1982-1988	0.26	2.3	-1.66	43.9	-3.7	17.6	0.2	9.89	20.7	-9.7	-313,838
1988-1994	3.33	2.0	1.22	12.9	6.4	19.4	3.4	999	17.7	-1.2	-1,303,685
1994-2000	2.91	1.5	1.64	11.6	4.7	18.3	2.2	77.7	21.2	9.0-	-1,179,133
2000-2009	1.14	0.8	0.24	2.21	2.1	19.2	2.6	78.0	20.4	-0.5	-1,637,707

TMAC: Tasa media anual de crecimiento por periodo

a: Inflación respecto a diciembre del año anterior, base 2002=100

b: Para el periodo 1982-1994 se usó base 1980 y para 1994-2009 base 1993

c: Balance público consolidado

d: Saldo en millones de dólares

Fuente: elaboración con base en Chávez (2007:175) y datos del Banco de Información Económica del INEGI y Banco de México.

Durante el MAEM el hecho estilizado más importante consiste en el estancamiento de principios de los ochenta y la posterior reducción en la tasa de crecimiento, tanto del producto interno bruto real como del producto por persona, lo que se resume en el cuadro 2.10. Actualmente, del 2000 al 2010, vivimos un nuevo periodo de estancamiento, que por sus condiciones se ha decidido llamarlo "estabilizador".

Otro hecho estilizado de este periodo es la gradual reducción de la tasa de inflación por medio del uso de políticas monetarias y fiscales restrictivas, las cuales han sacrificado el crecimiento económico y el empleo en aras de contener el alza de los precios, asociado con ello, está la constante apreciación del tipo de cambio real, lo que acarrea una pérdida de competitividad de las exportaciones mexicanas, que además se encuentra vinculado a las crisis recurrentes por las que ha atravesado el país.

La formación bruta de capital, componente fundamental del crecimiento económico ha mostrado un aumento raquítico, en especial se han presentado durante todo el periodo reducciones en la inversión pública en infraestructura, de la misma forma la inversión privada nacional se ha contraído, contribuyendo al estancamiento (véase cuadro 2.11).

El consumo total ha presentado un crecimiento promedio anual de 2.8%, lo que implica una exánime demanda efectiva, que crea pocos incentivos a la acumulación y producción de bienes y servicios.

Producto de la política vigente, el déficit del sector público se ha reducido sustancialmente, al menos en lo referente al balance consolidado. Más que incrementar los ingresos en los últimos años, lo que se ha dado es una paulatina reducción del gasto público, algo que resulta compatible con el paradigma de la escasez y la austeridad.

Para rematar este cuadro desolador, se tiene que el déficit de balanza comercial se ha incrementado notoriamente, como resultado de la firma de innumerables tratados comerciales, reducción de aranceles, tarifas y restricciones a la importación, sumado todo ello al franco proceso de insuficiencia dinámica manufacturera prevaleciente. Las importaciones crecen en proporción mayor a las exportaciones, con esto se magnifica la restricción externa al crecimiento económico, lo que, de acuerdo con nuestro marco teórico, ensancha la divergencia con respecto a quienes venden productos con una elevada elasticidad precio e ingreso de la demanda, elaborados bajo condiciones de rendimientos crecientes. La estructura industrial nacional es incapaz de satisfacer la demanda existente, esto profundiza los desequilibrios de naturaleza estructural, con lo que se perpetúa el círculo vicioso de estancamiento económico.

Cuadro 2.11 Estructura de la inversión

	Inversión						
	Total	Púb	lica	Pri	vada		
	% del PIB	% del total	% del PIB	% del total	% del PIB		
1982	19.5	44.2	8.6	55.8	10.9		
1983	14.5	39.5	5.7	60.5	8.8		
1984	14.9	38.6	5.8	61.4	9.1		
1985	15.7	36.1	5.7	63.9	10.0		
1986	14.3	35.1	5.0	64.9	9.3		
1987	14.1	30.8	4.3	69.2	9.7		
1988	15.6	25.0	3.9	75.0	11.7		
1989	15.8	25.3	4.0	74.7	11.8		
1990	17.0	24.9	4.2	75.1	12.8		
1991	18.1	22.6	4.1	77.4	14.0		
1992	19.4	19.7	3.8	80.3	15.6		
1993	18.6	20.3	3.8	79.7	14.8		
1994	19.3	25.7	4.9	74.3	14.3		
1995	14.6	24.8	3.6	75.2	11.0		
1996	16.1	18.2	2.9	81.8	13.2		
1997	18.3	16.5	3.0	83.5	15.3		

Continúa...

	Inversión						
	Total	Púb	lica	Pri	vada		
	% del PIB	% del total	% del PIB	% del total	% del PIB		
1998	19.2	13.9	2.7	86.1	16.6		
1999	20.0	14.3	2.9	85.7	17.1		
2000	20.9	16.3	3.4	83.7	17.5		
2001	19.7	15.1	3.0	84.9	16.7		
2002	19.3	16.4	3.2	83.6	16.1		
2003	18.9	20.2	3.8	79.8	15.1		
2004	19.7	21.7	4.3	78.4	15.4		
2005	20.5	21.9	4.8	78.1	16		
2006	21.4	19.6	4.2	80.4	17.2		
2007	22.2	20.7	4.6	79.4	17.6		
2008	23.7	22.7	5.2	77.2	17.7		

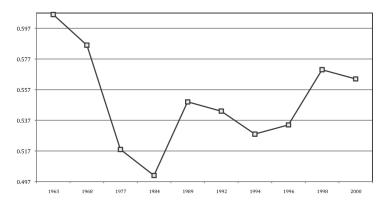
Fuente: Moreno-Brid y Ros (2004: 48) de 1982 al 2002 y del 2003 al 2008 del Centro de Estudios de las Finanzas Públicas de la H. Cámara de Diputados.

A continuación se destacan algunos de los acontecimientos más importantes del actual modelo de largo plazo. Considerando cada uno de los periodos señalados en la figura 2.2, se realiza también un repaso de la política industrial, si es que así se le puede llamar a las pocas acciones que durante esta etapa se han tomado.

2.3.4.1 Crecimiento cero y ajuste estructural, 1982-1994

Después de varias señales de alerta, en el mes de agosto de 1982 estalló la crisis de deuda externa. Agotadas las reservas internacionales e incontenible la fuga de capitales, acicateada en vez de contenida por la devaluación de febrero, México declaró la moratoria en el pago de la deuda externa (Guillén, 2000:47-48). Para evitar que se presentara una crisis sistémica en el orden financiero internacional, los acreedores, en especial el Fondo Monetario Internacional, obligaron a México a incorporar una serie de reformas que ahora se les

conoce como el Consenso de Washington, las cuales impactaron de forma negativa el crecimiento económico de México (Guillén, 1990).


Los acuerdos suscritos con el FMI significaron un cambio radical en la estrategia y política económica. Desde 1983 el gobierno aplicó un programa de ajuste de corte ortodoxo, cuyo objetivo principal consistía en controlar la inflación y relegar el crecimiento económico a un segundo término. Ante la crisis del modelo de ISI, se inició un conjunto de modificaciones orientadas a sentar las bases de un nuevo modelo enfocado a las exportaciones, abierto a la economía mundial, desregulado, menos estatificado, basado en las fuerzas del mercado y donde la inversión privada fuera el motor de la acumulación de capital (Guillén, 2000: 52).

Las medidas implementadas no fueron eficientes, eficaces y efectivas, por el contrario, como ya se documentó en la sección 2.3, se dio inicio y consolidó una situación de estancamiento. Durante el periodo 1983-1987, el PIB decreció 0.03% en términos reales y el PIB por habitante se contrajo 1.9%.

En materia industrial, durante los años ochenta, el panorama global de su desarrollo en México es de estancamiento y retroceso. Las cifras sobre la producción industrial manufacturera en el periodo 1981-1987 mostraron una evolución errática marcada por agudos descensos en el volumen y valor de la producción, seguidos por débiles recuperaciones, que no permitieron corregir la trayectoria descendente (Velasco, 1989: 232).

Con el cambio de modelo económico en los ochenta, el eje de la industrialización deja de ser el mercado interno y su lugar lo ocupa la producción de bienes para el mercado mundial, en el contexto de una internacionalización de los procesos productivos. La industria se modifica para transitar de un bloque industrializador a uno destinado a ensamblar componentes importados para su posterior exportación.

Gráfica 2.13 Evolución de la distribución del ingreso medida por el coeficiente de Gini, 1963-2000

Fuente: Hernández y Roa (2003: 546)

La principal característica del nuevo modelo económico será su debilidad para generar empleo estable y de calidad, así como su contribución a una distribución más desigual del ingreso (gráfica 2.13). Ambos rasgos se deben a que el proceso de liberalización comercial en que descansa el nuevo bloque ha barrido con los viejos eslabonamientos productivos sin reconstruir los antiguos. De esta manera, el incremento de la demanda industrial de aquellos segmentos dinámicos del bloque no se transmite al conjunto de la economía. La creación de un vasto ejército industrial de reserva, presiona así sobre los salarios provocando una situación depresiva crónica en el monto de los mismos. El bloque industrializador reproduce de esta manera sus condiciones de existencia. dado que el eje de la competitividad subordinada es la desvalorización aguda del valor de la fuerza de trabajo (Velasco, 1989: 265-266).

En 1988-1994 se iniciaron y consolidaron los ajustes estructurales iniciados a principios de lo ochenta, las políticas monetaria y fiscal continuaron siendo restrictivas y tenían como objetivo estabilizar las principales variables macroeco-

nómicas. Las acciones que destacan son: 1) la aplicación de un programa heterodoxo para el control de la inflación, 2) la venta de empresas públicas, 3) la liberalización y apertura del sistema financiero, 4) la profundización de la apertura comercial, y 5) la desregulación paulatina de la actividad económica.

Cuadro 2.12 Inversión extranjera directa por sector (%)

Año	Total (millones de dólares)	₩	2	33	4	Ŋ	9	7	8	6
1994	10,647	0.10	0.92	58.16	0.14	2.44	11.76	6.76	8.85	10.88
1995	8,375	0.13	0.94	58.06	0.03	0.59	12.09	10.46	12.78	4.92
1996	7,848	0.43	1.07	61.41	0.01	0.32	9.58	5.45	15.49	6.23
1997	12,146	0.08	1.08	60.03	0.04	0.91	15.41	5.65	9.19	7.62
1998	8,374	0.35	0.59	59.83	0.30	1.63	12.40	5.25	8.75	10.90
1999	13,835	66.19	1.78	5.61	10.28	11.54	2.14	0.79	1.09	0.60
2000	18,015	55.47	0.94	26.98	13.57	11.58	-10.75	0.95	0.74	0.51
2001	29,770	19.72	0.04	55.30	7.87	5.55	9.83	0.36	1.12	0.21
2002	23,686	37.06	1.09	28.48	7.65	5.45	16.68	1.51	1.68	0.39
2003	16,437	47.05	0.81	17.67	8.90	9.65	13.37	0.52	1.96	0.07
2004	23,648	55.68	0.82	24.28	5.39	4.23	7.01	1.64	0.86	0.09
2005	21,798	50.47	0.94	7.28	12.85	13.05	13.16	1.28	0.92	0.05
2006	19,141	51.36	1.92	24.42	2.96	14.46	3.31	1.91	-0.45	0.11
2007	27,167	44.26	7.06	24.56	5.40	8.14	2.95	6.54	0.60	0.49
2008	18,589	33.14	22.86	21.44	9.30	4.35	4.17	2.49	2.21	0.05

Agropecuario, 2: Minería, 3: Manufactura, 4: Electricidad, 5: Construcción, 6: Comercio, 7: Transporte, 8: Servicios financieros y 9: Servicios comunales.
 Fuente: elaboración con datos del Banco de Información Económica del INEGI

El elemento de mayor trascendencia es la firma del Tratado de Libre Comercio con América del Norte (TLCAN), cuya puesta en marcha selló el rumbo ortodoxo de la estrategia económica del gobierno mexicano. Su operación hace oficial la pérdida de competitividad de la industria nacional y con ello reduce las posibilidades de salida del estancamiento económico.

Por otro lado, gracias a su operación, el comercio exterior y la inversión extranjera han adquirido un gran impulso (cuadro 2.12), pero se ha generado una desviación del comercio hacia América del Norte, en perjuicio del intercambio con el resto del mundo, principalmente América Latina. Además, agravó la dependencia de la economía hacia las importaciones y los flujos externos de capital (Guillén, 2000: 104).

Las reformas en la política financiera implementada ocasionaron una mayor fragilidad y debilitaron los mecanismos de supervisión, la seguridad se redujo al mínimo y ello creó el caldo de cultivo idóneo para la aparición de crisis financieras periódicas. Todavía más, se abrieron las puertas para la operación de bancos extranjeros, lo que acentuó la dependencia del sistema financiero de los flujos externos de capital y se puso a disposición de intereses extranjeros el ahorro interno nacional, ¿sería posible que un banco de capital nacional abriera una sucursal en territorio norteamericano para obtener depósitos de sus ciudadanos e invertirlos en proyectos productivos en México?

Como se puso de manifiesto en las gráficas y cuadros de la sección 2.3, debe reconocerse que durante los primeros tres años de este periodo, los resultados fueron positivos. En ese lapso la economía mexicana logró una recuperación modesta, con lo cual superó temporalmente el estancamiento prevaleciente de 1982 a 1988.

No obstante, para finales de 1992 la desaceleración era evidente. En 1994 se vino la crisis, la cual, aunque se puede explicar por medidas y comportamientos coyunturales (como la contracción crediticia provocada por el sobreendeudamiento privado, reforzada por una política monetaria restrictiva), se insiste, es de naturaleza estructural, asociada a la pérdida de dinamismo de la actividad productiva, específicamente al desmantelamiento del sector industrial manu-

facturero nacional, fuente de economías de escala estáticas y dinámicas.

Uno de los ejes fundamentales de la estrategia ortodoxa fue la apertura comercial y financiera, más que configurar un modelo secundario-exportador fundado sobre una base productiva más sólida, dio lugar a una suerte de modelo secundario-importador, basado en el predominio de las actividades financieras y en el ingreso desbordado de capitales provenientes del exterior (Guillén, 2000: 152).

2.3.4.2 Era TLCAN y estancamiento estabilizador, 1994-2010

Los dos elementos principales que caracterizan a este periodo son la entrada en operación del TLCAN y la aparición de un estancamiento en el producto y empleo junto a la estabilidad de los precios y balance público.

Adicional a lo anterior, destaca lo siguiente: 1) se emprendieron nuevas privatizaciones de entidades paraestatales: ferrocarriles, aeropuertos, puertos, petroquímica y comunicación satelital, 2) se consolidó la vinculación con la economía estadounidense, 3) los flujos de capital continuaron siendo el principal medio de financiamiento del desequilibrio de la balanza de cuenta corriente, 4) se privatizó el esquema de pensiones del IMSS y se crean las Afores para el control privado de los recursos, 5) se mantuvo la política de apertura al capital extranjero, y 6) se rescató el sistema financiero con recursos fiscales, mediante un mecanismo de compra de las carteras vencidas de los bancos.

Otro rasgo sobresaliente de este periodo es el incremento del déficit comercial (gráfica 2.14) que tiene como sustento estructural la desarticulación industrial, agravada por el MAEM. La desaparición de las cadenas productivas generada por el avance del modelo ha provocado que las empresas exportadoras y el conjunto del sistema productivo, sean ahora más dependientes de las importaciones de insumos que

antes, convirtiéndose este hecho en un nuevo elemento que impulsa el desequilibrio comercial. Esto se comprueba al revisar los datos de la balanza comercial manufacturera (véase gráfica 2.11).

3000
2000
1000
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
-1000
-2000
-3000
MAQUILADORA
TOTAL
----NO MAQUILADORA

Gráfica 2.14 Evolución del déficit comercial total en México, 1991-2008 (millones de dólares)

Fuente: elaboración con datos del Banco de Información Económica del INEGI.

La recuperación económica, cuando se da, ha sido muy desigual, porque beneficia principalmente al sector exportador, a los servicios y a la industria de la construcción. Sin embargo, las pequeñas y medianas empresas manufactureras vinculadas al mercado interno, así como el sector agropecuario, continúan rezagándose.

Los intentos por delinear y ejecutar una política industrial, han sido tímidos e insuficientes, principalmente enfocados a la integración de empresas proveedoras al sector exportador. Estas medidas, más que resultar del convencimiento gubernamental sobre la necesidad de una política industrial, son motivadas por las crecientes presiones empresariales para restablecer una política de estímulos a la planta productiva (Guillén, 2000: 225-226).

En general, el programa económico aplicado hasta la fecha se ha caracterizado por (Blum, 2001: 42-43): 1) liberalización de importaciones, 2) firma de acuerdos comerciales; 3) eliminación de regulaciones y restricciones a la actividad económica en general, y a la inversión extranjera en particular, 4) aplicación de cambios en la estructura del gasto público, invirtiendo menos en infraestructura y reduciendo el gasto corriente y el servicio de la deuda, 5) privatización de las entidades productivas propiedad del gobierno, 6) replanteamiento de los subsidios sociales gubernamentales, en un intento de que el gasto directo del gobierno llegue a los sectores más pobres, y 7) la ausencia de una política de desarrollo industrial con activa participación pública ante la evidencia de un estancamiento que ha superado el cuarto de siglo.²²

2.3.5 Notas sobre la política industrial del modelo de apertura y estabilización²³

El elemento más importante de la actual política industrial lo constituye la firma y puesta en marcha del Tratado de Libre Comercio con América del Norte (TLCAN), porque significó un cambio radical en la estrategia de desarrollo, ya que de una vez por todas y para siempre se daba fin a la sustitución de importaciones y a la industrialización conducida por el Estado. El nuevo centro, a partir de entonces, consiste en la liberalización comercial, la desregulación de los mercados y la paulatina salida gubernamental de la actividad productiva directa (sólo participa en la generación de energía eléctrica y petróleo).

Para referencias extensas sobre las condiciones económicas, pero también políticas y sociales posteriores a 1980, véase Haber, Klein, Maurer y Middlebrook (2008).

²³ La redacción de esta sección es un resumen con comentarios del artículo de Moreno-Brid, Santamaría y Rivas (2006: 95-102). Se recomienda revisar también a Ros (1993) y Moreno Brid y Ros (2004) para mayores referencias.

El acuerdo de libre comercio con Estados Unidos y Canadá fue visto por el gobierno, y por algunos especialistas, como un instrumento para lograr dos metas: la primera consistía en lograr tasas de crecimiento económico no inflacionarias, basadas en la exportación de productos manufacturados no petroleros; su intención era convertir a México en una plataforma de exportación hacia Estados Unidos y Canadá; bajo su lógica, se incrementarían la inversión nacional y extranjera para explotar este potencial. La expansión de la manufactura en función de las exportaciones basadas en ventajas comparativas estáticas (bajos costos de la mano de obra y cercanía geográfica) conduciría inexorablemente a elevar la economía.

La segunda meta era garantizar que las reformas macroeconómicas del Consenso de Washington se cumplieran a cabalidad. Desde su posición, el TLCAN impondría restricciones, principalmente legales, que disuadirían cualquier intento de gobiernos posteriores para regresar a políticas de corte proteccionista y fuerte intervención estatal, el objetivo, pues, era evitar una vuelta al pasado y vincular la economía nacional con Estados Unidos de Norteamérica.

El desarrollo, en su opinión, sólo es posible por medio de la libertad, una libertad acotada, tendenciosa y en muchos sentidos fantasiosa. Los notables incrementos en el producto y empleo maquilador dan cuenta del éxito de su estrategia, lo mismo que el creciente déficit comercial de las actividades manufactureras, especialmente aquellas destinadas a satisfacer el mercado interno. Se vive, industrialmente hablando, una etapa de neodependencia y resurrección-modernización de los viejos enclaves económicos.

Aunque, por supuesto, debe reconocerse que no todo está del todo mal, ya que se ha incrementado notablemente la inversión extranjera directa, reducido los déficit presupuestarios, se han contenido la inflación y la dependencia de las exportaciones petroleras (no así la dependencia respecto al

hidrocarburo en materia de ingresos fiscales), han crecido las reservas internacionales y se mantiene una cierta estabilidad.

El MAEM es sin duda como andar en un carro nuevo de tipo semicompacto (economía mexicana semiindustrializada), sobre un camino pavimentado pero sin mantenimiento (los problemas estructurales), lleno de pequeños y grandes agujeros (estancamiento, bajas tasas de crecimiento), pero también de áreas libres de problema (breves periodos de crecimiento), recorriendo sin parar con un rumbo no del todo definido (indefinición de la política económica principalmente industrial).

Desde 1984 México comenzó a eliminar o a reducir aranceles y barreras no arancelarias al comercio exterior. En 1985 se firmó un acuerdo con Estados Unidos comprometiéndose a evitar los subsidios a la exportación. Por aquel año se estableció también un sistema por medio del cual se reembolsaba a los exportadores los aranceles que pagaban y un programa que permitía la libre entrada de productos y materias primas para la exportación (PITEX).

En 1986 México entró al Acuerdo General sobre Aranceles y Comercio y ello facilitó la entrada de inversión extranjera directa, en especial en los sectores intensivos en capital o tecnología. Para 1987 los permisos previos a la importación fueron suprimidos en 25 de 48 ramas del sector manufacturero, en los siguientes años sucedió lo mismo con las 23 restantes.

En 1991, cuatro años después, se iniciaron las negociaciones del TLCAN, en 1993 se firmó y en 1994 comenzó su operación con el compromiso de eliminar gradualmente en los próximos diez años las tasas arancelarias, las barreras no arancelarias y las restricciones a la entrada de Inversión Extranjera Directa (IED). Para mediados de los noventa pocas restricciones se mantenían, las existentes se centraron en la protección del sector agropecuario, en especial del maíz, refinación de petróleo y producción de equipo de transporte. No se incluyeron muchos incentivos a las exportaciones, se mantuvieron la exención de aranceles para importaciones

temporales —especialmente en las maquiladoras— y el programa de entrada libre de materias primas y productos para la exportación (PITEX).

En materia de política industrial propiamente, hasta 1984 ésta era muy fuerte, al menos en los documentos oficiales, ya que el Programa Nacional para el Fomento Industrial y el Comercio Exterior señalaba que la sustitución de importaciones selectiva de bienes de capital mejoraría el crecimiento. Además, establecía un papel significativo del sector público en la promoción de la industrialización. En los hechos, las medidas recomendadas se quedaron en el baúl de los recuerdos, ya que las autoridades de aquellos años consideraron que no era ni posible ni deseable la intervención directa del Estado en la actividad productiva.

El cambio en la política industrial se oficializó con el Programa Nacional de Modernización Industrial y del Comercio Exterior de 1990-1994. Éste determinaba que lo más conveniente era aplicar políticas horizontales que corrigieran las posibles fallas del mercado sin favorecer a sectores individuales. Su principal objetivo consistió en reducir las barreras arancelarias y realizar una simplificación administrativa. De acuerdo con los principales postulados de la teoría económica ortodoxa, se favoreció, a partir de entonces, la creación de un tejido institucional favorable a la actividad económica; atrás quedaban los apoyos específicos y focalizados.²⁴

²⁴ En Clavijo y Valdivieso (1994) se presenta una excelente síntesis de la política industrial de México de 1990 a 1994. Específicamente, analizan el Programa Nacional de Modernización Industrial y del Comercio Exterior (PRONAMICE), concluyendo que era de naturaleza no intervencionista, caracterizado por mantener los siguientes puntos de vista: considera que la corrección de las distorsiones en la asignación de recursos y la adopción por parte del Estado de una política firme a favor de la competencia en los mercados de bienes y factores son suficientes para impulsar el crecimiento del sector manufacturero; descarta la definición de sectores prioritarios; excluye el uso de subsidios y protección comercial como instrumentos de fomento industrial y únicamente autoriza el uso de acciones de tipo regulatorio y normativo, por lo que las labores de fomento, aunque delineadas sectorialmente, se reducen a la eliminación de trabas en el funcionamiento de los mercados.

Durante la etapa de ajuste estructural (1988-1994), se profundizó el desmantelamiento de la política industrial tradicional e inició una nueva generación de programas horizontales con la intención de maximizar las ventajas comparativas. Se excluyó cualquier tipo de subsidios o programas de reducción de impuestos y esquemas comerciales de protección industrial. En realidad, los nuevos programas estaban destinados a todos los negocios, ya fuera manufactura o servicios, consistían en: a) determinar las líneas para el diagnóstico de la actividad económica a tratar, y b) identificar las acciones y requerimientos del gobierno y de las entidades privadas para mejorar su funcionamiento.

En mayo de 1996 se lanzó el Programa de Política Industrial y Comercio Exterior 1996-2000, el cual tenía tres grandes líneas estratégicas: 1) crear condiciones de rentabilidad elevada y permanente en la exportación directa e indirecta, ampliar y fortalecer el acceso de los productos nacionales a los mercados de exportación, 2) fomentar el desarrollo de un mercado interno y la sustitución eficiente de importaciones, para sustentar la inserción de la industria nacional en la economía internacional, y 3) inducir el desarrollo de agrupamientos industriales (*clusters*) de alta competitividad internacional, lo mismo regionales que sectoriales, con una creciente integración a los mismos de empresas micro, pequeñas y medianas.

Bajo el argumento de que el MAEM había conducido a una excesiva fragmentación de algunas cadenas productivas, se consideró necesario poner en marcha viejas políticas, excluyendo la protección comercial. Las líneas estratégicas serían instrumentadas mediante las siguientes políticas: 1) estabilidad macroeconómica y desarrollo financiero, 2) creación y mejoramiento de infraestructura física, base institucional y de recursos humanos, 3) fomento a la integración de cadenas productivas, 4) mejoramiento de la infraestructura tecnológica para el desarrollo de la industria, 5) desregulación

económica, 6) promoción de exportaciones, 7) negociaciones comerciales internacionales²⁵ y 8) competencia.

En relación a la promoción de exportaciones, se establecieron diversas medidas basadas en el supuesto de que ningún subsidio se debía conceder más allá de la disminución de impuestos a la entrada de importaciones temporales o de la eliminación acelerada de ciertas tarifas. Junto a estas iniciativas y los programas para las maquiladoras, el PITEX y la devolución de impuestos, se incluyeron el ALTEX, un programa para favorecer la entrada de insumos temporales exentos de impuestos para los grandes exportadores; el Sistema Mexicano para la Promoción Externa (SIMPEX) y el Sistema de Información Empresarial Mexicano (SIEM), éste último integra un registro completo de las empresas existentes desde una perspectiva de promoción y búsqueda de oportunidades de negocios.

Otro que resulta significativo desde el 2001 es el PROSEC (Programa de Promoción Sectorial), el cual apoya a ciertas industrias clasificadas en 22 sectores por el impacto negativo de la regla 303 del TLCAN, que busca evitar distorsiones comerciales en la región. La regla consiste en que ocho años después de la entrada en vigor del tratado, México debía igualar las tarifas nominales aplicadas a las importaciones que tienen su origen fuera de la región con las aplicadas a las mercancías de la región.

En los últimos años, la mayoría de planes y programas consideran que la liberalización comercial ha traído beneficios para el país y bajo este marco la política industrial consiste en medidas de apoyo para sectores específicos que estimulen la inversión. De cierta forma, y con restricciones, la inversión del sector público se ha incrementado en los últimos seis años (cuadro 2.11). Gracias a ello se han puesto

Para el año 2005 ya se habían suscrito acuerdos de libre comercio con una buena parte del mundo. Con Chile (1991), Costa Rica, Colombia, Venezuela y Bolivia (1994), la Unión Europea (2000) y con Japón (2004). Actualmente se encuentra uno en proceso de negociación con Brasil.

en marcha programas para apoyar a: la industria automotriz, electrónica, software, aeronáutica, textil, agricultura, maquiladoras, productos químicos, cuero, zapatos, turismo, comercio y construcción.

A nivel retórico, el enfoque de fomento horizontal parece estarse abandonando en pro de uno sectorial-específico; sin embargo, en la práctica, el instrumento dominante de la política industrial siguen siendo los permisos para la entrada de insumos importados exentos de impuestos para la reexportación.

2.4 Desempeño industrial manufacturero, una macroperspectiva, 1993-2008

La industria manufacturera es el motor del crecimiento económico, es portadora y difusora del progreso tecnológico, es un sector integrador del resto de actividades productivas; por su alto contenido tecnológico, de innovación y complejidad normalmente sus productos presentan una elevada elasticidad precio e ingreso de la demanda, con lo que también tiene términos de intercambio favorables, las manufacturas integradas en cadenas productivas flexibles y dinámicas con alto contenido nacional reducen el estrangulamiento externo. En esta sección, teniendo como marco el contexto macroeconómico descrito, se realiza un resumen de las principales características de la industria manufacturera en México a nivel de sus nueve subsectores.

Con datos provenientes de los censos industriales 1994, 1999, 2004 y 2009, 26 se exponen las características más des-

Se excluyeron los censos industriales de 1981, 1986 y 1989 por tener errores en la captura que distorsionan la comparación con los censos más recientes. Al momento de redactar la investigación aún no se tenían los resultados definitivos del censo 2009, así que sólo se incluyeron los oportunos, los cuales únicamente consideran las variables de unidades económicas, personal ocupado y remuneraciones. Aunque aquí no se analiza el periodo 1980-1989, en el documento "Evolución del sector manufacturero de México, 1980-2003", publicado por el Centro de Estudios de las Finanzas Públicas de la Cámara de Diputados, se analiza la oferta, demanda y estructura productiva de las

tacadas de las industrias manufactureras con operaciones en México, ya no se diga nacionales, ya que este tipo de estadísticas no permiten discriminar entre maquiladoras y manufacturas, entre industria nacional e industria extranjera; a pesar de sus limitaciones, se expone su desempeño a nivel de subsector conforme a la clasificación del Catalogo Mexicano de Actividades y Productos (CMAP), para el caso de los censos 2004 y 2009 se compatibilizó la información que se presentó de acuerdo al Sistema de Clasificación Industrial de América del Norte 2002 (SCIAN).²⁷ Los datos de remuneraciones, valor agregado y formación bruta de capital se deflactaron usando el Índice Nacional de Precios al Productor para el sector secundario, construido por el Banco de México.

2.4.1 Número de establecimientos, personal ocupado y valor agregado

En el país el número de establecimientos manufactureros se ha incrementado relativamente, al pasar de 265 427 unidades en 1993 a 435 436 en el 2008, un alza de 170 009 en dieciséis años. En el subsector 31 (productos alimenticios, bebidas y tabaco) los establecimientos pasaron de 91 932 a 157 460; en el 32 (textiles, prendas de vestir e industrias del cuero) de 44 126 a 77 633; en el 33 (industrias de la madera y productos de la madera) de 31 606 a 21 959; en el 34 (papel, productos de papel, imprentas e editoriales) de 15 049 a 21 868; en el 35 (sustancias químicas, derivados del petróleo, productos de caucho y plástico) de 7 091 a 8 974; en el 36 (productos

manufacturas en ese periodo; también se recomienda revisar el trabajo de Dussel (1997), en especial los capítulos 3 y 4.

²⁷ En relación a las diferencias entre los diversos sistemas de clasificación de la actividad industrial utilizados por el INEGI, se recomienda la revisión del documento Tablas comparativas entre el SCIAN y otros clasificadores. Para conocer a fondo los diferentes productos que integran cada una de las divisiones de la manufactura véase el documento Sistema de Clasificación Industrial de América del Norte, México 2002.

de minerales no metálicos, excepto derivados del petróleo y carbón) de 24 361 a 29 883; en el 37 (industrias metálicas básicas) de 321 a 916; en el 38 (productos metálicos, maquinaria y equipo) de 46 246 a 96 894 y en el 39 (otras industrias manufactureras) de 4 695 a 19 849.

En promedio anual, el crecimiento del número de establecimientos manufactureros entre 1993 y 2008 fue de 3.4%, de 1993 a 1998 de 4.4%, de 1998 a 2003 de -0.8% y de 2003 a 2008 de 4.8%. De 1993 a 2008 el crecimiento promedio anual en el subsector 31 fue de 3.7%, en el 32 de 3.8%, en el 33 de -2.4%, en el 34 de 2.5%, en el 35 de 1.6%, en el 36 de 1.4%, en el 37 de 7.2%, en el 38 de 5.1% y en el 39 de 10.1%.

En el cuadro 2.13 se resumen los porcentajes de participación que tenían cada uno de los subsectores de la manufactura; los bienes de consumo (31, 32 y 33) aportaban poco más del 60% de unidades económicas en promedio, para todos los años; los bienes intermedios (34-37) poco más del 17% en promedio y los bienes de capital (38 y 39) un 23% en promedio.

A nivel individual, las industrias de productos alimenticios, bebidas y tabaco (empresas de reducida generación de valor agregado y contenido tecnológico) fueron las que más aportaban con 34% en 1993 y 1998, 37% en 2003 y 36% en 2008. Le seguían en número las industrias de productos metálicos, maquinaria y equipo (de alto contenido tecnológico y valor agregado, pero de carácter maquilador y transnacional en su mayoría).

Cuadro 2.13 Distribución porcentual de las unidades económicas manufactureras

	1993	1998	2003	2008
3	100	100	100	100
31	34.64	34.18	37.51	36.16
32	16.62	16.06	14.42	17.83
33	11.91	12.58	5.39	5.04
34	5.67	5.67	5.22	5.02
35	2.67	3.12	2.35	2.06
36	9.18	8.81	7.62	6.86
37	0.12	0.09	0.38	0.21
38	17.42	17.50	23.54	22.25
39	1.77	2.00	3.57	4.56

Fuente: elaboración con base en los Censos Industriales.

En relación a la población ocupada en el sector, ésta se ha incrementado en los años para los que se cuenta con información, pero no tanto como el número de establecimientos. De hecho, en 1993 daba empleo a 3 246 031 personas, en 1998 a 4 232 322, a 4 198 579 en el 2003 y 4 522 799 en el 2008. El incremento neto entre 1993 y 2008 en materia de empleo en las manufacturas fue de 1 276 768 personas. A nivel de subsector, el 31 subió en 257 354 personas, el 32 en 100 109, el 33 la redujo en 84 065, el 34 la aumentó en 29 673, el 35 en 112 481, el 36 en 20 109, el 37 en 12 046, el 38 y 39 crecieron en 663 093 y 165 968 personas, respectivamente.

El aumento promedio anual de la población ocupada de las manufacturas entre 1993 y 2008 fue de 2.2%, de 1993 a 1998 de 4.5%, de 1998 a 2003 de -0.1% y de 2003 a 2008 de 1.2%. Las cifras evidencian el proceso de insuficiencia dinámica que se vive.

La distribución porcentual (cuadro 2.14) indica que los subsectores de alimentos, bebidas y tabaco; textiles, prendas de vestir e industrias del cuero; sustancias químicas, deriva-

dos del petróleo, productos de caucho y plástico y los productos metálicos, maquinaria y equipo concentraban al 79% de la población ocupada en 1993 y al 83% en el 2008. Cuatro de nueve subsectores concentran la generación de puestos de trabajo, dos del sector de bienes de consumo, o del sector de bienes intermedios, y uno del sector de bienes de capital.

El subsector de otras industrias manufactureras, aunque sigue representando una fracción poco importante del empleo total, 4.64% en el 2008, ha sido el de mayor crecimiento, al lograr entre 1993 y 2008 un promedio anual de 11%.

Cuadro 2.14 Distribución porcentual de la población ocupada en la manufactura

	1993	1998	2003	2008
3	100	100	100	100
31	21.70	18.70	20.13	21.26
32	16.86	21.12	17.53	14.31
33	5.18	5.06	1.68	1.86
34	6.08	5.26	4.72	5.02
35	11.71	11.34	10.97	10.89
36	5.66	4.74	4.46	4.51
37	1.82	1.06	1.60	1.57
38	29.64	31.16	34.80	35.93
39	1.35	1.56	4.11	4.64

Fuente: elaboración con base en los Censos Industriales.

Aunque el crecimiento de las empresas manufactureras ha sido importante, al calcular el tamaño medio de los establecimientos, es decir, al dividir la población ocupada entre el número de establecimientos, se verifica que los mismos son pequeños, en promedio: para 1993 en las manufacturas totales se contaba con 12 empleados por establecimiento y para 2008 con 10.

Los datos revelan que las unidades económicas manufactureras son pequeñas, lo que puede significar un tamaño de planta insuficiente como para aprovechar las economías de escala. Por subsector se tiene que las industrias metálicas básicas son las que presentan un promedio de empleados por establecimiento mayor, seguido de las industrias químicas, derivados del petróleo, productos de caucho y plástico y las industrias de productos metálicos, maquinaria y equipo, lo cual resulta lógico dada su naturaleza.

Con excepción del subsector 35 y 39, todos exhibieron a partir de 1993 una reducción en el promedio de trabajadores por unidad económica, debido a que los establecimientos se incrementaron más que la población que ocupaban. Un caso especial es el del subsector 37 que de un promedio de 184 empleados por establecimiento en 1993 pasó a 77 en el 2008.

Cuadro 2.15 Promedio de empleados por establecimiento en las manufacturas

	1993	1998	2003	2008
3	12	12	13	10
31	8	7	7	6
32	12	16	16	8
33	5	5	4	4
34	13	11	12	10
35	54	45	60	55
36	8	7	8	7
37	184	147	54	77
38	21	22	19	17
39	9	10	15	11

Fuente: elaboración con base en los Censos Industriales.

Los datos de valor agregado se presentan en el cuadro 2.16; por principio de cuentas se tiene que los subsectores

que más contribuían con el total fueron el 31, 32, 35 y 38. Entre 1993 y 2003 el valor agregado en las manufacturas creció a un promedio de 1.8% anual; de 1993 a 1998 un 0.7% y de 1998 a 2003 un 3.9%.

De 1993 a 2003 el subsector 31 creció un 0.6% promedio anual, el 32 un 0.4%, el 33 decreció un 6.7%, el 34 un 0.6%, el 35 creció un 1.8%, el 36 un 2.1%, el 37 un 0.8%, el 38 un 3.7% y el 39 un 8.6%. Las tasas de crecimiento del valor agregado en los diferentes subsectores de la manufactura resultan despreciables o negativas, con la excepción del subsector de otras industrias manufactureras.

Cuadro 2.16 Distribución porcentual del valor agregado en la manufactura

	1993	1998	2003
3	100	100	100
31	25.30	20.92	20.99
32	8.35	8.51	6.74
33	1.88	1.77	0.51
34	5.52	5.24	3.82
35	23.05	19.40	23.07
36	6.45	6.10	6.68
37	3.31	4.99	2.86
38	25.35	32.30	33.26
39	0.79	0.78	2.06

Fuente: elaboración con base en los Censos Industriales.

En la gráfica 2.15 se presentan las tasas de crecimiento del valor agregado y la población ocupada en las manufacturas, la línea de tendencia sugiere que entre las variables existe una relación positiva, tal y como se anticipa por el marco teórico de referencia y en especial por la segunda ley de Kaldor o ley Verdoorn. La excepción es el subsector 34, donde decrece el valor agregado pero crece en menos de un punto porcentual

la población ocupada o empleo. Además, con la excepción del subsector 39, de 1993 a 2003 las tasas de crecimiento de ambas variables son reducidas.

Gráfica 2.15 Crecimiento del valor agregado y la población ocupada manufacturera (subsectores), 1993-2003

Fuente: elaboración con base en los Censos Industriales.

2.4.2 Remuneraciones, inversión y productividad

En este apartado se presentan datos para tres variables que complementan el análisis anterior y permiten conocer a fondo el desempeño por subsectores de la manufactura. Las cifras de remuneraciones, inversión y productividad fueron tomadas de los censos industriales y posteriormente transformadas en valores reales con el ánimo de hacerlas comparables en el tiempo, *a priori* se espera encontrar evidencia preliminar para la ley Verdoorn-Kaldor; es decir, observar que la productividad se incrementó o contrajo como consecuencia de movimientos en el mismo sentido del valor agregado.

Las remuneraciones, un factor crucial para la expansión del mercado interno, subieron en 22 488 531 pesos entre 1993 y 2008 para el total manufacturero. Los subsectores

con una mayor participación en las remuneraciones fueron el 31, 32, 35 y 38 con un 81% en 1993, 83% en 1998, 85% en 2003 y 83% en 2008. El subsector 31 elevó las remuneraciones entre 1993 y 2008 en 1 212 665 pesos, el 32 las redujo en 687 157, el 33 las redujo en 904 462, el 34 las redujo en 271 592, el 35 las aumentó en 3 672 987, el 36 las redujo en 44 404, el 37 las incrementó en 164 102, el 38 en 16 090 341 y el 39 en 3 256 050 pesos.

Cuadro 2.17 Distribución porcentual de las remuneraciones en la manufactura

	1993	1998	2003	2008
3	100	100	100	100
31	17.89	15.97	16.81	14.66
32	11.35	12.43	9.98	7.63
33	2.32	2.15	0.63	0.68
34	6.73	5.96	4.18	4.68
35	19.54	21.33	20.11	18.71
36	5.40	4.44	3.99	3.95
37	3.24	2.34	2.50	2.59
38	32.65	34.23	38.35	42.69
39	0.89	1.16	3.44	4.40

Fuente: elaboración con base en los Censos Industriales.

Los resultados confirman que las industrias alimenticias, de bebidas y tabaco, así como las de productos metálicos, maquinaria y equipo concentran un número importante de establecimientos, personal ocupado, valor agregado y remuneraciones. Aunado a esto, se encontró que de acuerdo al promedio de empleados por establecimiento, la mayoría de industrias se clasificarían como pequeñas y medianas.

Cuadro 2.18 Remuneraciones reales medias por trabajador en la manufactura

	1993	1998	2003	2008
3	19,900	14,428	16,823	19,255
31	16,405	12,327	14,049	13,276
32	13,398	8,489	9,582	10,265
33	8,907	6,130	6,253	7,052
34	22,012	16,343	14,898	17,939
35	33,206	27,140	30,838	33,080
36	18,963	13,515	15,042	16,876
37	35,488	31,778	26,325	31,783
38	21,920	15,848	18,543	22,877
39	13,115	10,684	14,099	18,257

Fuente: elaboración con base en los Censos Industriales.

Para aproximarse a la distribución en las manufacturas, en el cuadro 2.18 se presentan las remuneraciones medias, las cuales eran de 19 900 pesos en 1993, 14 428 en 1998, 16 823 en el 2003 y 19 255 en 2008, con lo que se redujeron entre el año inicial y final. Los subsectores con las mayores remuneraciones por trabajador son: sustancias químicas, derivados del petroleó y caucho (35), el cual además está entre los que más personal ocupa; el otro subsector es el de industrias metálicas básicas (37), que tiene el mayor promedio de empleados por establecimiento; comparativamente estos dos subsectores de la manufactura son los que pagan los mayores salarios a sus empleados.

Entre 1993 y 2008 los subsectores 31 a 37 redujeron el valor de las remuneraciones medias, únicamente los subsectores 38 y 39 aumentaron las mismas. Las cifras revelan que, en promedio, las remuneraciones medias en las manufacturas mexicanas son exiguas, lo que sin duda se convierte en un obstáculo para el crecimiento del mercado interno, si así están las manufacturas ¿cómo estarán sectores como la agricultura y los servicios no financieros?

Una variable clave en el crecimiento, es la formación bruta de capital fijo. Con los datos de los censos industriales se encontró que para el periodo 1993-2003 la inversión decreció 0.3% promedio anual. En la mayoría de subsectores se redujo la inversión, que únicamente creció en el 35 a un 2.2% promedio anual, en el 38 un 1.5% y en el 39 un 4.3%.

Porcentualmente, la mayor participación la ostentan los productos metálicos, maquinaria y equipo; las sustancias químicas, derivados del petróleo, caucho y plástico y los productos alimenticios, bebidas y tabaco, su contribución es superior al 80% del total. Esta información corresponde con la presentada en los cuadros anteriores y refuerza la imagen concentrada de la industria manufacturera mexicana.

Hasta aquí, sectores clave de la manufactura concentran empleo, unidades económicas, remuneraciones, valor agregado e inversión fija bruta ¿Qué sucede entonces? ¿Por qué no crecen las manufacturas de forma elevada y con ellas la productividad y la actividad económica global? Las razones son muchas y tienen que ver con la falta de inversión pública y privada, el desmantelamiento de la política industrial y la estrategia exportadora basada en empresas maquiladoras, las cuales incrementan la dependencia externa. Las manufacturas con operaciones en México no han crecido al ritmo necesario para establecer un círculo virtuoso de acumulación y crecimiento.

Cuadro 2.19 Distribución porcentual de la inversión fija bruta en la manufactura

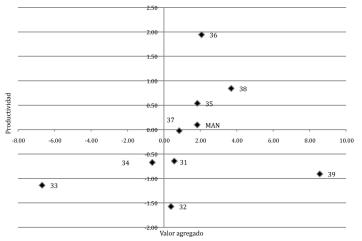
	1993	1998	2003
3	100	100	100
31	21.60	12.48	19.81
32	5.79	6.80	4.41
33	1.05	0.95	0.32
34	11.26	4.55	5.67
35	20.34	36.11	29.33
36	8.64	6.28	6.91
37	8.35	5.59	3.37
38	22.45	26.88	29.16
39	0.52	0.37	1.02

Fuente: elaboración con base en los Censos Industriales.

En la determinación de la competitividad, de acuerdo con nuestro modelo, la productividad es una variable determinante, en especial sus incrementos, como se ha mencionado insistentemente, están vinculados a una mayor división del trabajo producto de economías estáticas y dinámicas que aumentan la extensión del mercado y con ello surge una mayor productividad que genera círculos virtuosos de crecimiento acumulativo. Al menos eso es lo que la teoría sugiere, a continuación se examina la evolución de la productividad manufacturera a nivel global y de subsector.

De entrada se observa que la productividad es mayor que las remuneraciones medias, tanto a nivel global como a nivel de cada subsector; destacan por su monto los subsectores 31, 35, 36 y 37. La productividad manufacturera ha seguido un camino de luces y sombras, de 1993 a 1998 se redujo, pero de 1998 a 2003 se incrementó nuevamente. Los mayores cambios en la productividad para todo el periodo se dieron en los subsectores 35 y 36 al pasar en el primero de 103 452

pesos en 1993 a 112 105 pesos en el 2003 y para el segundo de 59 876 pesos a 79 897 pesos.

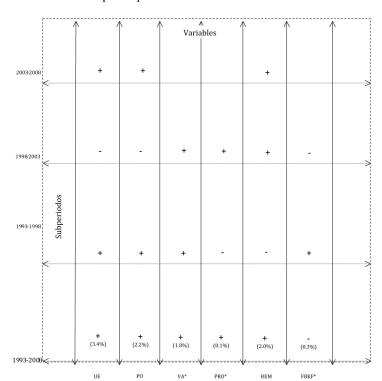

La tasa media anual de crecimiento de la productividad en las manufacturas mexicanas fue de 0.1% de 1993 al 2003, de -3.6% de 1993 a 1998 y de 4% de 1998 a 2003. De 1993 a 2003 el crecimiento medio fue de -0.6% en el subsector 31, de -1.6% en el 32, de -1.1% en el 33, de -0.7% en el 34, de 0.5% en el 35, de 1.9% en el 36, de 0% en el 37, de 0.85% en el 38 y de 0.9% en el 39. Existe una claro proceso de estancamiento de la productividad laboral en las manufacturas y en todos sus subsectores.

Cuadro 2.20 Productividad real del trabajo en las manufacturas

	1993	1998	2003
3	52,560	42,123	53,325
31	61,281	47,131	55,624
32	26,016	16,979	20,507
33	19,102	14,721	16,084
34	47,747	41,939	43,149
35	103,452	72,071	112,105
36	59,876	54,165	79,897
37	95,626	197,844	95,299
38	44,955	43,660	50,979
39	30,686	21,016	26,769

Fuente: elaboración con base en los Censos Industriales.

Gráfica 2.16 Crecimiento del valor agregado y la productividad manufacturera (subsectores), 1993-2003


Fuente: elaboración con base en los Censos Industriales.

La relación entre las tasas de crecimiento de la productividad y el valor agregado para todas las manufacturas y sus subsectores de 1993 a 2003 (ley Verdoorn-Kaldor) se presenta en la gráfica 2.16. En cinco de nueve subsectores existe una correlación positiva entre las variables, mientras que en los otros cuatro es negativa. Destaca el caso del subsector de otras industrias manufactureras, en el cual creció el valor agregado por encima del 8%, pero la productividad se contrajo casi un punto porcentual.

No se conoce en este punto si existe o no una relación de causalidad entre las variables, simplemente se ha realizado un análisis de tipo descriptivo que permite conocer el comportamiento de las variables, en el capítulo siguiente se evalúa con mejores instrumentos la hipótesis central de investigación.

En la figura 2.3 se resume la evolución de las principales variables de la actividad manufacturera en México, durante el MAEM, considerando el total de la manufactura. Las conclusio-

nes son: 1) el número de establecimientos, población ocupada, remuneraciones, valor agregado y productividad se incrementó de 1993 a 2008 (2003), 2) las tasas medias anuales de crecimiento de dichas variables se encuentra lejos de ser satisfactorias, son más bien despreciables, 3) el sector manufacturero se encuentra relativamente estancado, 4) la gravedad del estancamiento manufacturero queda de manifiesto al observar que la formación bruta de capital decreció en promedio anual de 1993 a 2003; 5) existe una correlación positiva entre las tasas de crecimiento del valor agregado y la población ocupada para el periodo 1993-2003 y subperiodo 1993-1998, no es así para el subperiodo 1998-2003, y 6) existe una correlación positiva entre las tasas de crecimiento del valor agregado y la productividad para el periodo 1993-2003 y subperiodo 1998-2003, no es así para el subperiodo 1993-1998.

Figura 2.3 Radiografía de los cambios en las principales variables de la manufactura

UE: Unidades Económicas; PO: Población Ocupada; REM: Remuneraciones; VA: Valor Agregado; FBKF: Inversión; PRO: Productividad. Entre paréntesis las tasas medias anuales de crecimiento para todo el periodo.

Fuente: elaboración propia. Los símbolos positivos significan incrementos y los negativos decrementos.

2.5 Conclusiones

La historia reciente de la economía mexicana se puede resumir apretadamente en dos periodos: el primero de 1940 a 1981, caracterizado por elevadas tasas de crecimiento del PIB total y per cápita asociadas a una economía cerrada con una fuerte presencia del Estado y un claro proceso de crea-

^{*} Para estas variables sólo se tiene información del periodo 1993-2003.

ción y fortalecimiento del tejido industrial, y el segundo, de 1982 a la actualidad, caracterizado por el estancamiento y bajas tasas asociadas a una apertura total de la economía, reducción del Estado y un paulatino proceso de desindustrialización.

Los resultados son lo suficientemente claros. No es una casualidad que el periodo de mayor crecimiento del producto y el empleo sea también el de mayor crecimiento del sector industrial, principalmente manufacturero. Las manufacturas se constituyeron durante más de treinta años en el motor de un crecimiento económico ininterrumpido. Desafortunadamente se incurrió en innumerables ineficiencias y excesos que han tenido costos de largo plazo.

El crecimiento económico es indispensable para mejorar las condiciones generales de vida de la población, para alcanzar un mayor bienestar social. Por medio de una economía en crecimiento se pueden crear empleos formales, estables y seguros. Bajo el actual MAEM la desaparición de tan preciado bien prácticamente se ha completado en aras de una virtual estabilidad macroeconómica, particularmente el control de la inflación y el gasto público por medio de políticas monetarias y fiscales contraccionistas.

Las expectativas de quienes abogaron, y siguen abogando, por las reformas del mercado eran que los cambios en la estructura de los incentivos, la introducción de la competencia y un marco estable resultarían en un elevado crecimiento económico.

En particular, esperaban que la integración con Estados Unidos, explotando nuestra posición geográfica única, aceleraría un proceso de convergencia en los ingresos per cápita muy similar al ocurrido en algunos países de la Unión Europea. La realidad, como se ha puesto de manifiesto en este capítulo, ha sido totalmente diferente.

En la primera parte de este apartado se analizó brevemente el desarrollo económico de México desde principios del siglo XX a principios de los años ochenta, se destacó la importancia que tuvo la industria como motor del crecimiento económico, especialmente durante el periodo 1940 a 1981, en el que se inició, fortaleció, pero no consolidó una estructura industrial.

El proceso de industrialización mexicano se truncó, nunca se completó la tercera fase del modelo de ISI; el país sigue dependiendo para su producción de una buena parte de insumos intermedios y bienes de capital que importa desde el exterior, principalmente de los centros industriales tecnológicamente más avanzados, lo que ha generado una suerte de nueva dependencia y esquema centros-periferia.

En la industrialización trunca, desindustrialización, apertura indiscriminada de la economía y aplicación de políticas de corte ortodoxo se encuentra la explicación a la fase actual de estancamiento. Romper la tasa de crecimiento económico del modelo de apertura y estabilización macroeconómica requiere de un moderno sector industrial manufacturero, enfocado tanto al mercado interno como al externo con un fuerte componente endógeno.

En la segunda parte se analizó el desempeño de la economía mexicana durante los pasados veintiocho años, se demostró que se encuentra estancada tanto en términos de producto como de empleo, lo que ha ocasionado una brecha mayor para alcanzar un mejor estado de desarrollo.

Para el año de 1980, México era un país de nivel medio de ingresos, su PIB per cápita representaba el 40% del promedio de ingreso de las naciones de la Organización para la Cooperación y el Desarrollo Económico (OCDE), para el 2009 el diferencial se incrementó, al representar apenas el 32% del promedio de las naciones de mayor desarrollo. Lo que coincide con una caída del porcentaje del empleo y producto industrial.

El proceso de convergencia económica como resultado de una mayor integración comercial, la privatización, la desregulación, y en general, la aplicación de las reformas de mercado, no ha sucedido. En su lugar, en las últimas casi tres décadas la economía mexicana ha sufrido un severo retraimiento comparado con lo ocurrido en los 40 años previos.

Los resultados económicos obtenidos durante los años de operación del MAEM dan cuenta de la catástrofe, de 1982 a 2010 el PIB total creció un 2.1% promedio anual; el PIB per cápita 0.46%; entre 1982 y 2008 se crearon un promedio anual de 354 306 empleos en el sector formal de la economía; la tasa de crecimiento del PIB manufacturero de 1982 a 2009 fue de 1.88% promedio anual. Entre el 2000 y 2009 la población ocupada total creció un 1.30% promedio anual, mientras que la ocupada en las manufacturas se redujo un 1.25%. Finalmente, el empleo precario pasó de poco más de 13 millones de personas a poco más de 16 millones.

Durante el MAEM se ha dado una profunda reestructuración de la actividad productiva a favor de las maquiladoras. Este tipo de industrias han crecido gracias a la apertura comercial, en especial con el TLCAN, son ellas las que han incrementado el empleo y la producción para los mercados de exportación, situando al país como una de las principales potencias exportadoras del mundo.

Este *boom* de las exportaciones maquiladoras no se encuentra asociado a elevadas tasas de crecimiento económico. La respuesta a esta aparente paradoja está en el hecho de que las maquiladoras consumen una gran cantidad de insumos importados y prácticamente se desvinculan del resto de la actividad económica.

La deficiente estructura industrial manufacturera y la elevada elasticidad ingreso de la demanda de importaciones se convierte en una de las principales fuentes de estrangulamiento del crecimiento económico, al incrementar el déficit en la balanza comercial total y manufacturera, lo que obliga a encontrar fuentes para su financiamiento.

Considerando tal situación, el gobierno en fechas recientes, al menos de forma retórica, ha decidido poner en marcha viejas políticas, excluyendo la protección comercial, para aliviar la insuficiencia dinámica. Las líneas estratégicas serían instrumentadas mediante las siguientes políticas: 1) estabilidad macroeconómica y desarrollo financiero, 2) creación y mejoramiento de infraestructura física, de la base institucional y de recursos humanos, 3) fomento a la integración de cadenas productivas, 4) mejoramiento de la infraestructura tecnológica, 5) desregulación económica, 6) promoción de exportaciones, 7) negociaciones comerciales internacionales, y 8) competencia.

En la tercera parte, teniendo como base los argumentos teóricos presentados en el primer capítulo y la evidencia empírica exhibida en el presente, se contrasta econométricamente la hipótesis de investigación. En el capítulo siguiente se demuestra que las manufacturas son un factor determinante del crecimiento económico global y por tanto del empleo. La clave para superar el estancamiento está en lograr que dicho sector crezca a tasas elevadas y sostenidas.

En la cuarta parte del capítulo, dada su importancia, se analizó el desempeño industrial manufacturero. Algunos de los principales resultados son que: 1) el número de establecimientos, población ocupada, remuneraciones, valor agregado y productividad se incrementó de 1993 a 2008 (2003), 2) las tasas medias anuales de crecimiento de dichas variables se encuentran lejos de ser satisfactorias, son más bien despreciables, 3) el sector manufacturero está relativamente estancado, 4) la gravedad del estancamiento manufacturero queda de manifiesto al observar que la formación bruta de capital decreció en promedio anual de 1993 a 2003, 5) existe una correlación positiva entre las tasas de crecimiento del valor agregado y la población ocupada para el periodo 1993-2003 y subperiodo 1993-1998, no es así para el subperiodo 1998-2003, y 6) existe una correlación positiva entre las tasas de crecimiento del valor agregado y la productividad para el periodo 1993-2003 y subperiodo 1998-2003, no es así para el subperiodo 1993-1998.

CAPÍTULO III

Industria manufacturera, motor del crecimiento económico. Evidencia econométrica

La modelación económica pretende identificar, cuantificar y, sobre todo, sistematizar tendencias y hechos económicos que responden a regularidades en el tiempo. Eso no quiere decir que se desprecien o se ignoren los eventos de corto plazo o inesperados, sino que éstos deben entenderse dentro de trayectorias o regularidades que las estructuras económicas van conformando con el tiempo.

Loría (2007)

3.1 Introducción

economía mexicana vive hoy en día un marcado proceso de estancamiento, el producto total durante el periodo 1982-2010 apenas ha aumentado en promedio anual al 2.1%, muy por debajo de lo alcanzado durante el desarrollo estabilizador o la etapa de crecimiento compartido; a nivel de producto per cápita las cosas están todavía peor, ya que en el mismo lapso se registra un incremento de apenas 0.4%.

Estos magros resultados han llevado a un incremento en el desempleo, la informalidad, la migración y en los casos de criminalidad. El pésimo desempeño en materia económica está conduciendo gradualmente a un deterioro de la sociedad, profundiza el estado de subdesarrollo de la economía mexicana y condena a millones de seres humanos a la pobreza.

¿A qué obedece este desplome económico? La respuesta en realidad no es nada simple ni fácil, pero (como se espera haber dejado claro) quizá se hallé en la insuficiencia dinámica del sector manufacturero no maquilador.

La economía sobrevuela con un motor sumamente dañado, nuestro avión (economía nacional) se esfuerza por alcanzar su destino que es el desarrollo, desafortunadamente el no tomar medidas a tiempo y el haber fortalecido los mecanismos que deterioran el motor (manufacturas) ha provocado que continuamente nos retrasemos (crisis periódicas), que seamos afectados de sobremanera por las condiciones climáticas ajenas a las ya de por sí desvencijadas condiciones de nuestra nave. Los últimos treinta años han dejado claro que se vive un fenómeno iatrogénico en donde la enfermedad (estancamiento) se magnifica por las recomendaciones del médico (hacedores de política económica).

La hipótesis que se ha propuesto para explicar el estancamiento económico en ningún momento espera ser superior a otras posibles, simplemente pretende ofrecer una alternativa congruente, seria y rigurosa a la problemática planteada. En términos muy someros, el argumento principal que se ha puesto sobre la mesa es que las mayores tasas de crecimiento económico y empleo están asociadas con un crecimiento dinámico del sector secundario de la economía –principalmente las manufacturas. Éste sector se encuentra sometido a la "ley de los rendimientos crecientes", lo que causa que la productividad se incremente como consecuencia de los incrementos en el producto, la productividad es endógena.

Se tiene como objetivo general para este tercer capítulo, demostrar que el estancamiento económico está asociado al proceso de insuficiencia dinámica de las manufacturas, sector principal que opera bajo condiciones de rendimientos crecientes a escala. Relacionados a este gran objetivo se tienen cuatro objetivos particulares: 1) resumir las principales evidencias en el plano internacional y nacional de las leyes de Kaldor, 2) demostrar el cumplimiento de la primera ley de Kaldor, 3) verificar la existencia de rendimientos crecientes en las manufacturas mexicanas (segunda ley), y 4) verificar la validez de la tercera ley de Kaldor.

3.2 La industria como motor del crecimiento económico. Resumen de evidencias²⁸

Kaldor atribuye al sector manufacturero rendimientos crecientes a escala, con lo que cualquier incremento en el producto genera una mayor productividad laboral y a la inversa.

En su artículo seminal de 1966 afirmaba que las mayores tasas de crecimiento económico están asociadas con las más altas tasas del sector secundario, un atributo que le correspondía a aquellas economías que entran en un proceso de madurez (como pensaba sucedía con la británica).

Utilizando la técnica de mínimos cuadrados ordinarios, datos de corte transversal para doce países de 1953 a 1963 y considerando el crecimiento del producto de toda la economía como variable endógena y como exógena el crecimiento de las manufacturas, demostró que entre ellas existía una relación positiva, con una elasticidad del crecimiento total respecto al crecimiento manufacturero de 0.614, con un nivel de confianza significativo; sus resultados le aportaron evidencia a favor de la primera de sus leyes.²⁹

Para la revisión de la literatura se recurrió al uso de base de datos electrónicas, para el periodo 2000-2009 en el caso de revistas nacionales y de 1966 a la fecha en el caso de publicaciones internacionales. Las bases consultadas fueron: Dialnet, Redalyc, Scielo, Repec, Ebsco, Jstor, Econolit, Annual Reviews, Springer, Elsevier y Wiley Interscience.

²⁹ También estimó con similar método dos ecuaciones más. En una de ellas la variable endógena fue la tasa de crecimiento del producto no manufacturero y la tasa de crecimiento de la producción manufacturera como exógena. La otra la variable endógena consistió en la tasa de crecimiento del producto

La razón para este resultado lo encontró en la ley Verdoorn, ya que de acuerdo con Kaldor, la productividad en la manufactura dependía del crecimiento del producto, además, dado que el nivel de productividad en las manufacturas es normalmente más alto que en el resto de sectores, una rápida tasa de expansión de ésta tenderá a arrastrar de manera positiva la productividad de los demás y de aquí el crecimiento global. Aún más, para Kaldor el factor determinante eran los rendimientos crecientes a escala, los cuales provocan que la productividad se incremente como respuesta a los cambios en el producto.

El resultado de regresar la tasa de crecimiento de la productividad sobre la del producto manufacturero, le arrojó un coeficiente estimado de 0.484; y de la regresión entre los crecimientos del empleo y del producto manufacturero fue de 0.516. Lo que, según Kaldor, era muestra de sustanciales rendimientos crecientes en las manufacturas.

Algunos años más tarde, Vaciago (1975), utilizando la técnica de mínimos cuadrados ordinarios para datos de sección cruzada (18 países de la OCDE), encontró que: aunque había rendimientos crecientes en las manufacturas de los países considerados, estos eran "decrecientes" en el tiempo, además observó que los mismos eran muy reducidos en los países de menor desarrollo relativo (Grecia, Portugal, España y Yugoslavia), y en aquellos que crecían más rápido. Básicamente calculó el efecto que tenía la tasa de crecimiento del producto manufacturero sobre la de la productividad laboral en las manufacturas, haciendo uso de una forma semilogarítmica de 1950 a 1967.

En ese mismo año, Rowthorn (1975) utilizó datos de sección cruzada para 42 países desarrollados (de 1958 a 1968)

total y la exógena el exceso de la tasa de crecimiento de las manufacturas sobre el crecimiento de la producción no manufacturera. Con ambas obtuvo evidencia a favor de la hipótesis de las manufacturas como motor del crecimiento económico.

estimó una ecuación en la que la tasa de crecimiento de la productividad laboral manufacturera se encontraba determinada por la tasa de crecimiento del empleo (dado que consideraba la escasez de empleo como una limitante en los países desarrollados). Sus conclusiones le indicaron que existían rendimientos crecientes a escala, siempre y cuando Japón fuera incluido en la muestra, si dicho país era excluido, entonces el resultado de estimar, por mínimos cuadrados ordinarios el crecimiento de la productividad en función del crecimiento del empleo manufacturero, aportaba evidencia de rendimientos constantes a escala.

La inclusión o exclusión de Japón de la muestra fue durante muchos años un tema de acalorada discusión, ya que ese país después de la Segunda Guerra Mundial había mostrado un crecimiento impresionante basado sobre todo en proceso de difusión tecnológica y adaptación industrial, que le llevó a converger con los principales líderes mundiales en muy poco tiempo.

Para aclarar en algo esta situación, Cornwall (1976) con datos de sección cruzada para 12 países de la OCDE de 1951 a 1965, estableció un modelo en el que la tasa de crecimiento del producto manufacturero estaba determinada por la tasa de crecimiento del empleo, el recíproco del ingreso per cápita y la tasa de inversión en la manufactura.

Sus resultados indicaban que cuando el tamaño del diferencial tecnológico era considerado para cada país, las estimaciones se volvían sensibles a la inclusión de Japón en la muestra, pero no tanto como se había reportado en el estudio de Rowthorn. Las estimaciones no fueron sensibles a la exclusión de países diferentes a Japón. Los datos arrojados también le sugirieron trabajar con modelos de ecuaciones simultáneas que especifiquen la estructura del mercado, tanto por el lado de la demanda como por el lado de la oferta, para entender las razones detrás del crecimiento del producto manufacturero.

Para finales de los años setenta había dos opciones para estimar rendimientos crecientes en las manufacturas a partir de la relación de Verdoorn. La primera era la especificación de Kaldor (1966) en la que el crecimiento de la productividad laboral o el empleo eran dependientes del crecimiento del producto manufacturero; la segunda especificación se atribuía a Rowthorn (1975), quien prefería un modelo en el que la tasa de crecimiento de la productividad laboral, o la tasa de crecimiento del producto, era determinada por la tasa de crecimiento del empleo.

Para Parik (1978) ambas opciones están sujetas a sesgo de ecuación (simultánea e incorrecta especificación de las ecuaciones estimadas), lo que los llevó a resultados erróneos. Utilizando mínimos cuadrados en dos etapas, en un marco de ecuaciones simultáneas con datos de 12 países de la OCDE para el periodo 1951-1970, estimó un modelo que usaba los factores de demanda y oferta para la determinación de la tasa de crecimiento del producto, empleo y productividad manufacturera.

Los factores de demanda explícitos eran las tasas de crecimiento de las exportaciones y la de inversión a producto. Para la oferta, era la tasa de crecimiento del empleo en el sector manufacturero. Sus resultados arrojaron que la especificación de Rowthorn no era adecuada, ya que el crecimiento del empleo en el sector manufacturero estaba determinado por el crecimiento del producto, mientras que el crecimiento del producto manufacturero estaba determinado por el crecimiento de sus exportaciones.

De esta forma llega a un resultado compatible totalmente con la investigación: es la tasa de crecimiento en el producto industrial la que parece restringir la tasa de crecimiento del empleo, y el bajo crecimiento en el producto manufacturero puede atribuirse a factores de demanda como las exportaciones, el consumo o la inversión.

En los años ochenta las evidencias en torno a las leyes de Kaldor se enriquecieron con seis trabajos que a continuación se comentan, tres de los cuales fueron realizados por John McCombie, economista inglés en el tema; dos más presentados en el marco de un número especial del *Journal of Post Keynesian Economics* aparecido en la primavera de 1983; el último de esta década que se analiza es el de un economista griego que estudió la estabilidad de las dos primeras leyes de Kaldor.

Para McCombie (1981), la importancia de las leyes de Kaldor es innegable para entender el proceso de crecimiento en el largo plazo y las diferencias en el crecimiento entre países y regiones. Usando un modelo que considera como endógena la tasa de crecimiento del empleo, y exógena la tasa de crecimiento del producto manufacturero para 12 países de la OCDE de 1950 a 1970, y aplicando el método de variables instrumentales, encuentra evidencia a favor de hipótesis de la industria como motor del crecimiento.

No obstante lo anterior, McCombie (1982) encontró que la primera ley de Kaldor no es tan robusta, ya que cuando la ecuación de regresión es correctamente estimada, la bondad del ajuste depende de puntos atípicos estadísticos. Sin embargo, no importando este hallazgo, la ley es completamente compatible con la explicación neoclásica que involucra diferentes elasticidades ingreso, de aquí que la ley por si misma no puede ser tomada como evidencia de un crecimiento restringido por la demanda, como lo sugiere Kaldor. Respecto a la ley Verdoorn, encontró una paradoja entre la especificación de la misma en su forma estática o dinámica. La especificación estática usando logaritmos de los niveles reporta rendimientos constantes, mientras que en la especificación dinámica que usa tasas de crecimiento los registra crecientes a escala.

McCombie (1983) al hacer una recapitulación de los diferentes trabajos que han abordado las leyes de Kaldor, hace una aportación interesante, y es la que refiere a la omisión de

la tasa de crecimiento del capital en la estimación de la ley Verdoorn. Haciendo uso de una muestra de once países de la OCDE (excluyendo Japón) para el periodo 1950 a 1965 y utilizando mínimos cuadrados ordinarios, demuestra que la inclusión de la tasa de inversión bruta a producto en la especificación de la ley Verdoorn genera evidencia de sustanciales rendimientos crecientes a escala.

Mas evidencias en favor de la primera ley de Kaldor son presentadas por Thirlwall (1983), quien para países de ingreso medio y bajo demuestra que: entre mayor sea la tasa de crecimiento de las manufacturas relativo al crecimiento del resto de sectores de actividad económica mayor es el crecimiento del producto global.

Gomulka (1983), utilizando datos para seis países de Europa del Este (Alemania del Este, Checoslovaquia, Yugoslavia, Hungría, Polonia, Bulgaria y Rumania), de 1961 a 1975, encontró evidencia a favor de la primera y segunda leyes de Kaldor.

Algunos años más tarde, Stavrinos (1987) analizó la estabilidad intertemporal de la primera y segunda leyes de Kaldor para el Reino Unido. Con series de tiempo trimestrales para el periodo de 1960 a 1984, encontró un cambio estructural estadísticamente significativo en la relación entre el crecimiento del PIB total y el crecimiento del producto manufacturero, lo cual ocurrió durante 1963. Este cambio estructural obedeció al rompimiento de la relación auxiliar entre el crecimiento del producto no manufacturero y el crecimiento del producto manufacturero. Otros dos cambios menores ocurrieron durante 1967 y 1979.

La ley Verdoorn la estimó con variables instrumentales, para lidiar con el problema de capacidad utilizada y el grado de rendimientos crecientes a escala. Los resultados detectaron un considerable debilitamiento en el grado de correlación entre el crecimiento de la productividad y el crecimiento del producto en el sector manufacturero, con dos fases estructurales descendentes estadísticamente significativas durante 1974 y

1979. De acuerdo con este autor, la inestabilidad observada, especialmente, en los parámetros de la ley Verdoorn debe ser tomada en cuenta cuando se estiman e interpretan estas leyes en periodos en los cuales existe un punto de rompimiento.

En los años noventa y en especial durante los últimos años, el interés por la hipótesis de la industria como motor del crecimiento económico ha sido revivida, sobre todo a partir de los debates sostenidos entre aquellos que piensa que en la nueva economía informacional son los servicios el eje dinamizador de la actividad económica y aquellos que creen que a pesar de los cambios ofrecidos por las nuevas tecnologías de la información, la esencia del sistema se mantiene inalterada y las manufacturas de tercera generación empujan la economía de forma ascendente.

Usando datos para cinco países del Este de Asia (Indonesia, Malasia, Filipinas, Singapur y Tailandia) para el periodo 1967-1992, Felipe (1998) estimó la primera ley de Kaldor, usando como regresor la diferencia entre la tasa de crecimiento del producto manufacturero y la tasa de crecimiento del producto no manufacturero y como regresando la tasa de crecimiento del producto total.

También incluyó un análisis novedoso de carácter estructural que incorporó modelos de dos sectores por el lado de la oferta, que permiten tomar en cuenta el efecto externalidad del sector manufacturero sobre el resto de la economía, con la productividad factorial relativa del sector manufacturero y no manufacturero. Los resultados confirmaron el rol trascendental de las manufacturas en este grupo de países. Con el marco estructural se concluye que el sector manufacturero es más eficiente en el uso de recursos que el resto de la economía (140% a 280%), excepto en Indonesia.

Resultados muy diferentes fueron encontrados por Mamgaim (1999), quien usando datos para países de reciente industrialización encontró que: las altas tasas de crecimiento de la manufactura no se transformaban en elevadas tasas de

crecimiento de la productividad laboral en Singapur, Indonesia, Tailandia y Mauritania, pero si en Corea del Sur. Para Malasia encontró una relación negativa. Su trabajo cuestiona la operación de las leyes de Kaldor en el contexto de la globalización y sugiere una revisión. A pesar de esto, encontró que para todos los países analizados la tasa de crecimiento del producto manufacturero incrementa la tasa de crecimiento del sector no manufacturero.

Usando datos de sección cruzada entre 45 países, principalmente naciones en desarrollo, para el periodo 1960-1994, Necmi (1999) encontró que la tasa de crecimiento del producto manufacturero es exógena tal y como Kaldor lo había señalado, además demuestra que el resto de leyes son perfectamente aplicables al mundo en desarrollo, principalmente establece que la tasa de crecimiento del producto manufacturero causa a la tasa de crecimiento de la productividad y el empleo; todavía más, para la mayor parte de su muestra (excepción del África Subsahariana) entre más rápido crece el producto manufacturero más rápida es la transferencia de trabajo desde otros sectores de la economía a las manufacturas, y en consecuencia crece más la productividad global. Usó variables instrumentales para enfrentarse a problemas asociados con la simultaneidad y espuriedad.

Utilizando las regiones de 12 países europeos, para el periodo 1984-1992, Pons-Novell y Viladecans-Marsal (1999), encontraron que sólo la ley Verdoorn y la tercera ley de Kaldor se sostienen en el espacio considerado, no hallaron información que les permitiera confirmar la primera ley, la cual sólo se valida si se considera una relación entre la tasa de crecimiento del producto total y la del producto manufacturero, pero dicha relación es espuria, ya que la segunda está contenida en la primera.

Además, estudiaron si la distribución espacial de las variables es aleatoria o bien responde a una autocorrelación o patrón de dependencia espacial. En el análisis de las tres le-

yes se encontró evidencia de autocorrelación espacial. Finalmente consideran que la ley Verdoorn por sí sola es incapaz de responder adecuadamente a los cambios en la productividad, que es necesario tomar en cuenta otros factores como son: la pérdida de empleos, difusión tecnológica en el plano internacional, diferentes especializaciones productivas en las unidades territoriales o incrementos en la competitividad que obedecen no únicamente al descenso de los precios, sino a mejoras en la calidad y avances técnicos.

Sin duda alguna el continente Africano sería otro si su grado de industrialización fuera mayor, esa es la conclusión que se desprende a nivel teórico de las leyes de Kaldor, mientras que a nivel empírico Wells y Thirlwall (2003) evaluaron el modelo kaldoriano para una muestra de 45 países africanos de 1980 a 1996, encontrando apoyo para las mismas.

El crecimiento del PIB parece estar bastante asociado con el crecimiento del sector industrial más que con los servicios, el comercio o la agricultura. De su análisis se desprende la necesidad urgente de reestructurar la vocación productiva de ese continente a favor de la industria, si es que se quiere acelerar el crecimiento.

Para el caso mexicano, Díaz-Bautista (2003), utilizando datos trimestrales del PIB real total y PIB industrial de la economía mexicana de 1980 a 2000 y aplicando técnicas de cointegración y un test de causalidad de Granger, demuestra que las manufacturas representan el motor del crecimiento económico en México. Sus resultados destacan la cointegración entre el sector industrial y el conjunto de la economía. El test de Granger muestra una dirección de causalidad que va del producto industrial al producto total.

En ese mismo año, Ocegueda (2003) utilizando datos estatales de la economía mexicana para el periodo 1980-2000, estimó la primera ley de Kaldor por mínimos cuadrados ordinarios y panel de datos. Sus resultados confirman débilmente la validez de la manufactura como motor del crecimiento

económico en México, algunas de las regresiones presentaron problemas en su estimación. La conclusión es que se requiere de mayor investigación al respecto. Para la segunda ley sí encuentra evidencia sólida de la existencia de rendimientos crecientes en las manufacturas, también para la tercera, lo que de cierta forma valida la primera ley, ya que las manufacturas generan externalidades positivas para el resto de sectores.

Ocegueda (2005) estimó la ley Verdoorn con datos del estado de Baja California de 1980 al 2001; consideró una ecuación en la que la productividad total factorial funciona como *regresando* y la tasa de crecimiento del producto manufacturero como *regresor*; para la estimación se basó en la técnica de mínimos cuadrados ordinarios y un modelo de efectos fijos.

Encontró un coeficiente de Verdoorn de 0.66 para las manufacturas del estado de Baja California, de 0.56 para las actividades comerciales y de 0.29 para las de servicios. Los resultados implican la existencia de rendimientos crecientes a escala, lo cual corrobora la hipótesis kaldoriana de economías externas dinámicas dentro de las actividades económicas no primarias. Los resultados le indicaron que no es en las actividades manufactureras en donde se manifiestan con mayor énfasis esta clase de fuerzas.

Calderón y Martínez (2005) analizan desde la perspectiva de la ley Verdoorn el impacto de la apertura y liberalización económicas sobre las industrias manufactureras regionales en México. Utilizan mínimos cuadrados ordinarios para datos de nueve regiones en México de 1960 a 1980, de 1985 a 1993 y de 1993 a 1998. Sus resultados indican rendimientos crecientes tanto para la estimación de la tasa de crecimiento de la productividad como regresando y el crecimiento del producto manufacturero como regresor y para la del crecimiento del producto como regresando y el empleo como regresor. Al condicionar por los salarios de eficiencia y un indicador de especialización industrial regional se encontraron coeficien-

tes de Verdoorn significativos para el periodo 1993-1998 y 1960-1970, lo que indicó el favorable impacto de la apertura sobre el empleo y la productividad.

De acuerdo con Seiter (2005), durante la última década del siglo XX la economía norteamericana experimentó el mayor *boom* económico desde la Segunda Guerra Mundial. Las tecnologías de la información y las comunicaciones (TIC) son vistas como una de las principales razones de este éxito económico y aún está abierta la cuestión en relación a cómo afectaron el crecimiento y el empleo.

Para evaluar este proceso utiliza las leyes de Kaldor, especialmente la ley Verdoorn. Una estimación simple por mínimos cuadrados ordinarios con datos de la economía norteamericana para el sector no agrícola indica que el coeficiente de Verdoorn se incrementó en la segunda mitad de los noventas. Así, se requiere de un mayor crecimiento del producto para mantener constante el empleo. Un problema que detecta a través de sus resultados es que en el largo plazo el crecimiento económico será menos intensivo en trabajo debido al progreso técnico inducido y a los rendimientos crecientes a escala. Opina que se mantienen las ideas de Kaldor en relación al crecimiento como un proceso de causación acumulativa.

Otros dos autores que analizan la economía de la información y el rol de las manufacturas a través de las leyes de Kaldor son Dasgupta y Singh (2005), a la luz de los siguientes fenómenos: a) un rápido crecimiento de los servicios en relación a la manufactura en muchos países de ingresos medios y bajos, lo que aparentemente desafía la idea de las manufacturas como motor del crecimiento económico, b) contrario a la experiencia histórica, la emergencia de una "desindustrialización" en algunos países en desarrollo con bajos niveles de ingreso per cápita, c) la cuestión del creciente desempleo en el sector formal, lo cual se ha presentado incluso en países de elevado crecimiento como la India; y d) parcialmente como consecuencia de (a) y de otros factores ha habido una expan-

sión del sector informal tanto en países en desarrollo que crecen como en aquellos que están estancados como México.

Para probar la validez de las leyes de Kaldor bajo este nuevo escenario de la economía mundial, utilizan tres bases de datos: a) análisis de sección cruzada para 30 países en desarrollo de 1980 al 2000, b) análisis de sección cruzada para 29 estados de la India y c) estimaciones basadas en información recopilada de sectores industriales organizados y no organizados en los estados de la India. Encuentra evidencia preliminar que apoya la primera de ellas.

En un trabajo posterior, Dasgupta y Singh (2006), usando nuevamente un marco kaldoriano bajo las condiciones establecidas en su artículo anterior, hallan que las manufacturas siguen siendo un factor crítico en el desarrollo económico, pero los servicios totales, así como muchos servicios individuales conectados con las TIC, tienen también una contribución positiva, especialmente en el caso de la India.

Calderón (2008) comprueba la existencia de rendimientos crecientes a escala en las industrias manufactureras regionales de México para el periodo 1999-2004 con la técnica de mínimos cuadrados ordinarios. Según sus resultados, la industria manufacturera de las mesorregiones Centro y Centro/Oeste sigue siendo dominante, a pesar de la apertura económica, el resto de regiones está sujeta a la dinámica de estas dos.

El último trabajo analizado, que utiliza el modelo kaldoriano para explicar el crecimiento económico, es el de Chakravarty y Mitra (2009), quienes se basan en datos de series de
tiempo, en diferentes componentes del sector organizado en
la India de 1973 al 2004. Su análisis usa el método de vectores autorregresivos, tomando en cuenta los resultados del
análisis de descomposición de varianza y la función de impulso respuesta. Los resultados sugieren que las manufacturas son importantes para el crecimiento.

3.3 Modelos econométricos y métodos de estimación

De acuerdo con los objetivos de investigación, se realizaron dos paquetes básicos de estimaciones econométricas; el primero concerniente a la verificación de la primera ley de Kaldor o la hipótesis de la industria manufacturera como motor del crecimiento económico; el segundo tiene que ver con las estimaciones de la ley Verdoorn (segunda ley de Kaldor), lo que confirma la existencia de rendimientos crecientes, pero además permite demostrar que la insuficiencia dinámica de las manufacturas se encuentra detrás de la etapa actual de estancamiento económico en México. Finalmente, se comprobó la validez de la tercera ley de Kaldor.

3.3.1 La industria manufacturera como motor del crecimiento económico en México

En línea con la primera ley, la tasa de crecimiento de una economía se correlaciona positivamente con la tasa de crecimiento del sector industrial manufacturero, o lo que es lo mismo, las manufacturas representan el motor del crecimiento. La razón detrás de esta aseveración se halla en los siguientes hechos: las manufacturas tienen efectos multiplicadores sobre el resto de la actividad económica, debido a la complejidad e innovación que integran los productos que generan; las elevadas elasticidades ingreso de la demanda y los encadenamientos productivos hacia atrás y delante, así como las economías dinámicas que se obtienen conforme la división del trabajo se incrementa como resultado del incremento en el producto. Siguiendo a Kaldor (1966), Cripps y Tarling (1973), Cornwall (1976) y Bairam (1991), la primera forma de evaluar la hipótesis consiste en estimar las siguientes especificaciones:

$$q_T = \alpha_T + \beta_T q_M$$
 [3.1]

$$p_{PC} = \alpha_{PC} + \beta_{PC} q_M$$
 [3.2]

Donde q_T , p_{PC} y q_M son las tasas de crecimiento del PIB total, del PIB per cápita y de la producción manufacturera. Se argumenta que una condición suficiente para el cumplimiento de la hipótesis, es la existencia de una relación estadísticamente significativa entre la tasa de crecimiento del producto total (q_T) o de la producción por persona (p_{PC}) y el producto manufacturero, con un coeficiente de regresión β significativamente mayor a cero. No obstante, es posible que las ecuaciones 3.1 y 3.2 arrojen resultados espurios. Esto debido a que el PIB total, y el per cápita, están relacionados por definición con el producto manufacturero. Para mostrar esto el PIB total se puede definir como:

$$Q_T = wQ_M + (1 - w)Q_{NM}$$
 [3.3]

Donde Q_T , Q_M y Q_{NM} son los niveles de PIB total, manufacturero y no manufacturero respectivamente, w y (1-w) son las participaciones del PIB manufacturero y no manufacturero. A partir de aquí el PIB total está dado por:

$$q_T = wq_M + (1 - w)q_{NM}$$
 [3.4]

La ecuación 3.4 indica que cualquier coeficiente β_T obtenido usando la ecuación 3.1 simplemente refleja la participación del PIB manufacturero en el PIB total (*i.e* $\beta_T = w$). Consecuentemente un coeficiente positivo y estadísticamente significativo de β_T (o β_{PC}) puede decir muy poco sobre la hipótesis.

La presente investigación considera que las siguientes cinco especificaciones son más apropiadas para evaluar la primera ley de Kaldor:

$$q_{NM} = \alpha_{NM} + \beta_{NM} q_M$$
 [3.5]

$$q_A = \alpha_A + \beta_A q_M$$
 [3.6]

$$q_S = \alpha_S + \beta_S q_M \tag{3.7}$$

$$q_T = \alpha_T + \beta_T (q_M - q_{NM})$$
 [3.8]

$$q_{NM} = \alpha_{NM} + \beta_{NM} \frac{Q_M}{Q_{TE}} q_M$$
 [3.9]

Donde q_{NM} , q_{M} , q_{A} , q_{S} , q_{T} son las tasas de crecimiento del PIB no manufacturero, manufacturero, agropecuario, comercial y de servicios y total, respectivamente. Q_{M} y Q_{TE} es un ponderador del regresor sugerido por McCombie y de Ridder (1983), donde el primero es el nivel del PIB manufacturero en un estado y el segundo es el nivel del PIB total en el estado. 30

Las ecuaciones anteriores se estimaron usando datos de sección cruzada para los 32 estados que componen el país, estimando los coeficientes con mínimos cuadrados ordinarios.³¹ Para determinar la dirección de causalidad se usaron series de tiempo del PIB total, industrial y manufacturero.

3.3.2. Ley Verdoorn-Kaldor y rendimientos crecientes en las manufacturas

La segunda ley de Kaldor o ley Verdoorn indica que $p_i = f(q_M)$, donde p_i es la tasa de crecimiento de la productividad del trabajo en la manufactura y q_M es la tasa de crecimiento del PIB manufacturero. La teoría detrás de esta relación es que los incrementos en el producto inducirán incrementos en la productividad laboral si la producción manufacturera está sujeta a rendimientos crecientes a escala de naturale-

³⁰ El foco de interés en la ecuación 3.9 es la bondad del ajuste, dado que es difícil dar una interpretación económica intuitiva al tamaño del coeficiente de regresión.

³¹ Únicamente para el caso de las ecuaciones 3.5 y 3.9 se utilizaron datos en panel.

za estática y dinámica.³² Los rendimientos estáticos se relacionan con las bien conocidas economías técnicas de escala de la producción en masa. Los rendimientos dinámicos son variopintos, incluyen el proceso de aprender haciendo, acumulación de capital inducida, progreso técnico incorporado y economías que provienen de la expansión conjunta de un grupo de industrias interrelacionadas.

Existen dos maneras básicas de evaluar empíricamente la ley Verdoorn-Kaldor. Una consiste en regresar la tasa de crecimiento de la productividad sobre la tasa de crecimiento del producto. La otra es regresar la tasa de crecimiento del empleo (e) sobre la tasa de crecimiento del producto manufacturero, dado que la tasa de crecimiento del producto es la suma del crecimiento de la productividad y el crecimiento del empleo. En el primer caso se tiene una especificación lineal de la forma:

$$p_i = q_M - e_M = \alpha + \beta q_M \tag{3.10}$$

En el segundo caso se tiene:

$$e_M = q_M - p_i = -\alpha + (1 - \beta)q_M$$
 [3.11]

Para Thirlwall (1983:354) incluso en la ausencia de rendimientos crecientes en la manufactura (lo cual es muy difícil de creer), el crecimiento del producto manufacturero continuará siendo el factor que gobierna el crecimiento del producto total en la medida en que los recursos usados por las manufacturas representan una adición neta al uso de recursos: a) porque de otra manera estos estarían en desuso, b) porque existen rendimientos decrecientes en los otros sectores, especialmente la agricultura y c) porque la industria genera sus propios recursos. Todo esto conduce directamente a la tercera ley de Kaldor según la cual entre más rápido sea el crecimiento de las manufacturas, más rápida será la transferencia de trabajo del sector no manufacturero al manufacturero, a partir de lo cual el crecimiento de la productividad global está positivamente relacionado con el crecimiento del producto y el empleo en las manufacturas y negativamente asociado con el crecimiento del empleo no manufacturero.

De la ecuación 3.10 se puede observar que si no existe mucha variación en el crecimiento del empleo a través de las regiones, entonces $\beta=1$. Igualmente, si no hay mucha variación en la tasa de crecimiento a través de las regiones, entonces $(1-\beta)=1$, y $\beta=0$. Tanto la ecuación 3.10 como 3.11 fueron calculadas usando datos de las treinta y dos entidades federativas de México para el periodo bajo estudio, se usaron datos de corte transversal y panel de datos que se detallan en la siguiente sección.

Para Rowthorn (1975) la especificación correcta de la ley Verdoorn-Kaldor es la consideración de $q_{\scriptscriptstyle M}$ como variable endógena o $p_{\scriptscriptstyle P}$ mientras $e_{\scriptscriptstyle M}$ se consideraba como regresor o variable exógena. Considerando que la población ocupada $(e_{\scriptscriptstyle M})$ en la manufactura es la variable explicativa, las ecuaciones a estimar serían:

$$q_{M} = \frac{\alpha}{1-\beta} + \left(\frac{1}{1-\beta}\right) e_{M}$$
 [3.12]

$$p_{i} = \frac{\alpha}{1-\beta} + \left(\frac{\beta}{1-\beta}\right) e_{M}$$
 [3.13]

De acuerdo con Calderón y Martínez (2005: 115), empíricamente la ley Verdoorn-Kaldor por sí misma, o no condicionada, es demasiado simple como para capturar las variaciones completas del crecimiento regional, aunque debe considerársele como base para el análisis. Consideran necesario condicionarla, adicionando variables de control que son importantes en el plano regional. La especificación de la ley Verdoorn-Kaldor condicionada queda como sigue:³³

³³ McCombie y de Ridder (1984) también condicionaron la ley por una variable denominada "ingreso potencial" que ayuda a capturar el efecto de la vecindad entre regiones; Fingleton y McCombie (1998) por una variable denominada "efecto externalidad" que ayuda a capturar las externalidades, producto de la cercanía geográfica con el principal centro económico.

$$p_i = \alpha + \beta_i q_M + \beta_2 TME + \beta_3 Q_{Li}$$
 [3.14]

Donde TME representa el tamaño medio de los establecimientos y Q_{Li} es un índice de especialización de la industria en el nivel regional.

Siguiendo a León-Ledezma (2000: 57), se tiene que una debilidad importante de las especificaciones hasta ahora presentadas es que no toman en cuenta la contribución del capital a los rendimientos crecientes.³⁴ En consecuencia las especificaciones más adecuadas para realizar las estimaciones serían:

$$e_M = \alpha + \beta_1 q_M + \beta_2 k_M \tag{3.15}$$

$$q_M = \theta + \omega_1 e_M + \omega_2 k_M \tag{3.16}$$

Dado que el grado de rendimientos a escala no se puede obtener directamente, a menos que se mantengan ciertas hipótesis sobre la evolución del stock de capital, en la investigación se supone que α y β son las elasticidades del producto con respecto al trabajo y al capital, y que la tasa de capital a producto es constante. Bajo este supuesto el coeficiente de Verdoorn (β) proporciona una estimación insesgada de ($1 - \alpha/\beta$). Dicho esto, una vez que se obtiene una medida de la tasa entre α y β se puede lograr una estimación de α + β . Si α + β es más grande que 1, es posible afirmar que existen rendimientos crecientes.

Siguiendo a McCombie y de Ridder (1984: 273), se tiene que la ecuación 3.15 es la especificación de Kaldor con el capital incluido y la especificación de Rowthorn es la 3.16 con

³⁴ Esto es relativamente cierto, en la medida en que las ecuaciones 3.10 y 3.11, corresponden a la función de progreso técnico de Kaldor, asumiendo que la razón capital a producto se mantiene constante, por lo que según Kaldor (1966), son válidas sólo para el conjunto del sistema económico en el largo plazo (Ocegueda, 2003: 1028).

el capital incluido. De la ecuación 3.15 se tiene que $\alpha + \beta = (1 - \beta_2/\beta_1)$. Y de la ecuación 3.16 se tiene que $\alpha + \beta = \omega_2 + \omega_1$, de este modo se tiene una medida directa de los rendimientos crecientes a escala.

Para Bairam (1987) los resultados de estudios empíricos realizados con estimaciones de la ecuación 3.15, la variable $k_{\scriptscriptstyle M}$ en general no es significativa y sale con el signo equivocado, en la ecuación 3.16, $k_{\scriptscriptstyle M}$, siempre tiene el signo correcto y es estadísticamente significativa. El resultado en 3.15 se asume a un error de especificación, ya que si el crecimiento está restringido por la demanda, $k_{\scriptscriptstyle M}$, es una variable endógena y no debe incluirse como regresor. Si el crecimiento del stock de capital es endógeno, debido a que se determina principalmente por el crecimiento del producto, entonces una mejor especificación de la ley vendría dada por:

$$ift = \delta_1 + \sigma_1 q_M$$
 [3.17]

$$q_{M} = \delta_{2} + \sigma_{2} ift$$
[3.18]

Donde *ift* es la tasa de crecimiento de los insumos factoriales totales, medida como *ift* = $\vartheta e_{\scriptscriptstyle M}$ + $(1-\vartheta)k$, donde ϑ y $(1-\vartheta)$ son las contribuciones del empleo y del capital al valor agregado de la manufactura. La ecuación 3.17 es la ecuación de Kaldor, mientras que la 3.18 es la de Rowthorn. El grado de rendimientos crecientes a escala vendría dado por $\alpha + \beta = 1/\sigma_{\scriptscriptstyle 1}$ en la especificación de Kaldor y $\alpha + \beta = \sigma_{\scriptscriptstyle 2}$ en la especificación de Rowthorn (León-Ledezma, 2000: 58).

Finalmente, como parte de la evaluación de la tercera ley de Kaldor, se estimó la siguiente ecuación:

$$p_{PC} = \alpha + \chi q_M - \eta e_{NM}$$
 [3.19]

Donde p_{PC} es la tasa de crecimiento del PIB per cápita, como proxie de la productividad global de la economía, q_{M} es la tasa de crecimiento del producto manufacturero y e_{NM} es el empleo no manufacturero.

3.3.3 Sobre los datos³⁵

El objetivo central consiste en evaluar empíricamente la validez del enfoque kaldoriano del crecimiento económico y con ello explicar las causas detrás del estancamiento económico en México. En orden para obtener resultados robustos, se usaron tanto datos (de sección cruzada, series de tiempo y panel) para el conjunto del país como estatales, de la industria, la manufactura total y por subsectores. A continuación se explica detalladamente el origen y características de la muestra que se utilizó para estimar cada una de las ecuaciones.

3.3.3.1 Datos para la estimación de la primera ley de Kaldor

Para comprobar la primera ley de Kaldor se utilizaron datos de corte transversal, series de tiempo y panel para el periodo 1980-2006.³⁶ Las ecuaciones 3.1 a la 3.9 se estimaron a través de la técnica de mínimos cuadrados ordinarios, con cifras deflactadas usando como año base 1993. Todas las cifras fueron obtenidas del Banco de Información Económica del INEGI, de la sección correspondiente a Cuentas Nacionales y Producto Interno Bruto por Entidad Federativa.

En el caso de la ecuación 3.1 se usaron las tasas de crecimiento del PIB manufacturero y PIB total para el periodo 1980-2006 y los subperiodos 1980-1988, 1988-1994, 1994-2000 y 2000-2006. Para la ecuación 3.2 se usaron las tasas de crecimiento del PIB per cápita y del PIB manufacturero;

³⁵ En el anexo 1 se presentan los datos básicos utilizados en los ejercicios de estimación econométrica.

³⁶ En el resto de estimaciones de sección cruzada se usaron los mismos periodos.

para la ecuación 3.5 las tasas de crecimiento del PIB no manufacturero (agropecuario, minería, construcción, electricidad, gas y agua, comercios, transportes, servicios financieros y servicios comunales) y las tasas de crecimiento del PIB manufacturero; en la ecuación 3.6 las tasas de crecimiento del PIB agropecuario y del PIB manufacturero; en la ecuación 3.7 las tasas de crecimiento del PIB del sector servicios (suma de los servicios financieros y de los servicios sociales, personales y comunales) y del PIB manufacturero; en la ecuación 3.8 las tasas de crecimiento del PIB total y la diferencia entre la tasa de crecimiento del PIB manufacturero y el PIB no manufacturero; en la ecuación 3.9 las tasas de crecimiento del PIB no manufacturero y la del PIB manufacturero, ponderado por la participación de las manufacturas en el PIB estatal del año final del periodo.

En el caso de las ecuaciones 3.5 y 3.9 se usaron también datos en panel para aprovechar de mejor forma la información, además de utilizar otra técnica econométrica que proporcionara mayor información respecto a la hipótesis. En la ecuación 3.5 se creó un panel compuesto por 32 entidades y cuatro periodos, 1980-1988, 1988-1994, 1994-2000 y 2000-2006, con las tasas de crecimiento del PIB no manufacturero y del PIB manufacturero.

Para la ecuación 3.9 se crearon dos paneles, el primero integrado por 23 estados (los de mayor participación en el PIB manufacturero), y el segundo con 22 estados (se excluyó Quintana Roo), en los dos se utilizaron las tasas de crecimiento del PIB no manufacturero y las tasas de crecimiento del producto manufacturero multiplicadas por un ponderador.

Finalmente, se consideraron dos series de tiempo para verificar la causalidad entre el PIB total y el manufacturero. La primera se creó utilizando las variables de PIB total y PIB industrial (incluye minería, construcción, manufacturas y electricidad, gas y agua) en valores absolutos reales de 1993, del primer trimestre de 1980 al primer trimestre del 2009. La

segunda serie se creó utilizando las variables de PIB total y PIB manufacturero en valores absolutos de 1993, del primer trimestre de 1980 al primer trimestre del 2009.

3.3.3.2 Datos para la estimación de la ley Verdoorn-Kaldor

En la estimación de la ecuación 3.10 se usaron datos de sección cruzada de 32 entidades federativas y nueve subsectores de actividad manufacturera, con lo que se contó con un total de 288 observaciones de 1980 a 2003. Se usaron las tasas de crecimiento de la productividad laboral y las del crecimiento del valor agregado manufacturero en valores reales de 1993; toda la información se obtuvo de los Censos Industriales correspondientes a cada año. La ecuación 3.10 también se estimó usando series de tiempo mensuales provenientes de la Encuesta Industrial Mensual, para el periodo enero de 1994 a diciembre de 2008. Las variables utilizadas fueron los logaritmos de la productividad laboral (medida como horas hombre ocupadas) y del valor de la producción en toda la industria manufacturera, ambas en valores reales de 2003.

La estimación de la ecuación 3.11 se realizó con datos de sección cruzada de 32 entidades federativas y nueve subsectores de actividad manufacturera, con lo que se contó con un total de 288 observaciones de 1980 a 2003. Se usaron las tasas de crecimiento del empleo y del valor agregado manufacturero, estas últimas en valores reales de 1993; toda la información se obtuvo de los Censos Industriales correspondientes a cada año.

Para esta misma ecuación se usaron los datos de la Encuesta Industrial Mensual, para construir dos paneles, uno con información para cada una de los nueve subsectores de la manufactura de 1994 al 2008 y otro igual pero con información de 19 entidades (las disponibles en la encuesta). Los datos considerados fueron la tasa de crecimiento del perso-

nal ocupado en las manufacturas y el valor de la producción en pesos de 1993.

La estimación de la ecuación 3.12 se realizó con datos de sección cruzada para 32 entidades federativas y nueve subsectores de la manufactura de 1980 al 2003, un total de 288 observaciones. Se usaron las tasas de crecimiento del valor agregado y del empleo manufacturero, las primeras en valores reales de 1993. Los datos fueron obtenidos de los Censo Industriales. Aunado a esto, se consideraron exclusivamente los 26 estados que más empleo manufacturero generan, con las mismas características de la estimación anterior, sólo que el número de observaciones se redujo a 239.

La estimación de la ecuación 3.13 se realizó con datos de sección cruzada para 32 entidades federativas y nueve subsectores de la manufactura de 1980 al 2003, con un total de 288 observaciones. Se usaron las tasas de crecimiento de la productividad laboral y del empleo manufacturero, las primeras en valores reales de 1993. Los datos se obtuvieron de los Censos Industriales.

Para la ecuación 3.14 se usaron datos organizados en un panel de treinta y dos entidades y nueve subsectores para dos periodos 1980-1993 y 1993-2003, con datos provenientes de los Censos Industriales y deflactados tomando 1993 como año base, se generaron un total de 576 observaciones. Las variables incluidas fueron la tasa de crecimiento de la productividad laboral y del valor agregado manufacturero, además del coeficiente de especialización de cada rama en los años de 1980 y 1993, así como el logaritmo natural del tamaño medio de los establecimientos para 1980 y 1993.

Para las ecuaciones 3.15 y 3.16 se usaron datos organizados en un panel de 32 entidades y nueve subsectores para los periodos 1980-1993 y 1993-2003, con datos provenientes de los Censos Industriales y deflactados tomando 1993 como año base; se generaron un total de 576 observaciones para cada ecuación. Las variables incluidas fueron la tasa de

crecimiento del empleo, del valor agregado y de la formación bruta de capital fijo (*proxy* del capital).

Para las ecuaciones 3.17 y 3.18 se usaron datos de sección cruzada para 32 entidades federativas y nueve subsectores de la manufactura de 1980 a 2003, con datos provenientes de los Censos Industriales, deflactados tomando 1993 como año base; se generaron un total de 288 observaciones por ecuación. Las variables consideradas fueron la tasa de crecimiento del valor agregado manufacturero y la tasa de crecimiento de los insumos factoriales totales.

Finalmente, para la estimación de la ecuación 3.19 se utilizaron datos provenientes del Sistema de Cuentas Nacionales por entidad para las variables del PIB total y manufacturero, de los Censos de Población y Vivienda para las variables del empleo no manufacturero y población por entidad. Se creó un panel con tres periodos (1980-1990, 1990-2000 y 2000-2006) para las variables de crecimiento de la productividad global (medida como PIB per cápita), producción manufacturera y empleo no manufacturero. Para el año 1990 se utilizó el PIB manufacturero de 1993 y para el año 1980, en lugar de la población ocupada por sector, se utilizó la población económicamente activa.

3.4 Estancamiento económico y leyes de Kaldor: resultados econométricos

En esta sección se presentan los resultados obtenidos al aplicar las técnicas econométricas respectivas sobre cada conjunto de datos. La figura 3.1 explica el proceso que se utilizó para la comprobación de la hipótesis. En primer lugar, partiendo de la teoría expuesta, en nuestro caso las leyes de Kaldor, especialmente la primera, y la ley Verdoorn-Kaldor, se estimaron las ecuaciones indicadas; posteriormente se evaluaron y cuando fueron adecuadas se finalizó al algoritmo, confirmando tentativamente la hipótesis; si el modelo no fue

adecuado, se reporta y se rechaza parcialmente la hipótesis sugerida dando fin al proyecto econométrico.

Modelo teórico: Leyes de Kaldor

Modelos econométricos
(SC, series de tiempo, panel)

Estimación

¿Fue adecuado el modelo?

No

Sí

Hipótesis
comprobada

Uso de los resultados
para conclusiones y
diseño de política

Figura 3.1 Estrategia analítica del proyecto econométrico

Fuente: elaborado a partir de (Maddala, 2001)

3.4.1 Resultados para la primera ley de Kaldor

3.4.1.1 Estimaciones de sección cruzada

Para la verificación de la hipótesis se usaron diferentes tipos y fuentes de datos, lo que llevó a la utilización de varios métodos de estimación econométrica.³⁷ En el cuadro 3.1 se reportan los resultados para las ecuaciones en las que se usaron datos de sección cruzada para el periodo 1980-2006.³⁸

De forma general, los resultados confirman la existencia de una relación positiva entre la tasa de crecimiento del

³⁷ Dado que la teoría sobre los métodos de estimación (mínimos cuadrados, técnicas de series y panel) son de sobra conocidos en la ciencia económica, no se reportan, se sugiere revisar Gujarati (2003) y Wooldridge (2000).

³⁸ En el anexo 2 se presentan los resultados para los subperíodos 1980-1988, 1988-1994, 1994-2000 y 2000-2006. También se presentan las gráficas de relación entre las series y los residuales obtenidos de cada una de las ecuaciones estimadas.

producto manufacturero y el crecimiento del producto total. Existe evidencia para suponer que en la economía mexicana, las manufacturas son un sector fundamental en la explicación de las bajas tasas registradas. Específicamente, en las ecuaciones 3.1 y 3.2 se tiene el signo correcto, los coeficientes estimados son estadísticamente significativos, para ser modelos de una sola variable explicativa se presenta una buena bondad de ajuste y superan todas las pruebas establecidas. Desafortunadamente, estas dos primeras ecuaciones no son definitivas, ya que pueden resultar espurias como se mencionó líneas arriba.

Cuadro 3.1 Primera ley de Kaldor: Mínimos Cuadrados Ordinarios. 1980-2006

				Ecuació	n		
	(3.1)	(3.2)	(3.5)	(3.6)	(3.7)	(3.8)	(3.9)
Variables independientes\Dependientes.	qΤ	pPC	qNM	qA	qS	qΤ	qNM
Constante	.849* (4.15)	.158 (.930)	.939* (5.36)	.180 (1.64)	1.147* (4.58)	2.81* (8.53)	2.38* (5.17)
qM	.339* (2.53)	.209* (2.16)	.248* (2.23)	.130* (2.09)	.124 (.482)	-	-
qM - qNM	-	-	-	-	-	088 (.481)	-
QM/QTE*qM	-	-	-	-	-	-	.78* (2.22)
n(entidades federativas)	32	32	32	32	32	32	32
R2ajustado	.25	.13	.11	.05	.019	.016	.04
F estadístico	11.07	5.64	4.99	2.91	.58	.50	2.52
D.W.	1.28	1.60	1.31	1.90	1.98	1.27	1.37
Prueba JB normalidad+	5.01 (.087)	2.10 (.349)	2.32 (.312)	.53 (.767)	7.08 (.029)	1.45 (.483)	7.54 (.023)

Continúa...

				Ecuació	n		
	(3.1)	(3.2)	(3.5)	(3.6)	(3.7)	(3.8)	(3.9)
Prueba Whi- te Heteroce- dasticidad	1.194 (.317)	.947 (.399)	.761 (.476)	.373 (.691)	.149 (.862)	.324 (.725)	.720 (.495)
Prueba Ram- sey forma funcional	3.02 (.064)	1.62 (.211)	2.169 (.133)	1.113 (.300)	2.614 (.091)	.243 (.625)	.002 (.956)

Prueba *t* entre paréntesis

- * Coeficiente estadísticamente significativo al 5%
- + Probabilidad entre paréntesis, la hipótesis nula es que se tiene normalidad, homocedasticidad y buena forma funcional.

Errores estándar & covarianza consistentes con Heterocedasticidad de White.

La ecuación 3.5 es la de mejor ajuste, los coeficientes estimados presentaron el signo esperado y fueron estadísticamente diferentes de cero, la bondad de ajuste es buena, aunque menor que en las primeras dos ecuaciones.³⁹ Además, cumple con el supuesto de normalidad, homocedasticidad y, por tanto, de correcta forma funcional. De esta forma, se tiene que para las regiones de México un incremento de un 10% en el PIB manufacturero se correlaciona con un incremento del 2.48% del PIB no manufacturero o de 11.87% si se considera el valor del intercepto.

Para las ecuaciones 3.6 y 3.7, aunque se tiene el signo positivo esperado, no se presentó una buena bondad de ajuste, aunque superaron las pruebas sobre las hipótesis del modelo. La ecuación 3.8 rechaza la primera ley de Kaldor, ya que el signo del coeficiente estimado fue negativo, lo que significa que ante incrementos en las manufacturas la producción total se reduce y a la inversa, afortunadamente el coeficiente no es significativamente diferente de cero, aunque debe destacarse que el modelo superó todas las pruebas realizadas sobre sus supuestos. La ecuación 3.9 ofrece evidencia a fa-

³⁹ De hecho, se reduce la bondad del ajuste en la medida en que se usan diferentes modelos de la primera ley de Kaldor.

vor de la hipótesis de las manufacturas como motor del crecimiento económico para el periodo 1980-2006, pero no se tiene una bondad de ajuste adecuada, a pesar de cumplirse con las pruebas de normalidad, homocedasticidad y forma funcional.

3.4.1.2 Estimaciones de series de tiempo

Debido a que las ecuaciones de regresión simple usadas muestran únicamente la presencia de correlación estadística entre el crecimiento del producto manufacturero y el producto total de la economía, es necesario utilizar técnicas de series de tiempo para determinar la dirección de causalidad.

Cuadro 3.2 Prueba de raíces unitarias para el PIB total de México 1980.1-2009.1

Hipótesis nula:	Log del PIB total tiene raíz unitaria		
Exógenas:	Intercepto y tendencia		
Rezagos:	9 con 12 como máximo, CIA		
		Estadístico t	Probabilidad
Test estadístico Dickey-Fuller Aumentado		-1.98	.604
Valores críticos:	Nivel 1%	-4.04	
	Nivel 5%	-3.45	
	Nivel 10%	-3.15	
Hipótesis nula:	Log del PIB total tiene raíz unitaria		
Exógenas:	Intercepto		
Rezagos:	9 con 12 como máximo, CIA		
		Estadístico t	Probabilidad

Test estadístico Dickey-Fuller Aumentado		1.71	.999
Valores críticos:	Nivel 1%	-3.49	
	Nivel 5%	-2.88	
	Nivel 10%	-2.58	
Hipótesis nula:	D (log PIB total) tiene raíz unitaria		
Exógenas:	Intercepto		
Rezagos:	8 con 12 como máximo, CIA		
		Estadístico t	Probabilidad
Test estadístico Dickey-Fuller Aumentado		-3.70	.0052
Valores críticos:	Nivel 1%	-3.49	
	Nivel 5%	-2.88	
	Nivel 10%	-2.58	

Se utilizó el enfoque de cointegración para determinar relación de largo plazo entre las series y un test de causalidad de Granger para determinar la dirección de la misma. Con las series se siguieron cuatro etapas: en la primera se analizó la estacionariedad, en la segunda se analizó la cointegración (procedimiento de Engle y Granger (1987)), en la tercera se realizó un modelo de corrección del error y en la cuarta se indagó la relación y dirección de causalidad (test de Granger). En primer lugar se presentan las pruebas para la series de PIB industrial versus PIB total y en segundo las de PIB manufacturero versus PIB total.

Cuadro 3.3 Prueba de raíces unitarias para el PIB industrial de México 1980.1-2009.1

Hipótesis nula:	Log del PIB ind tiene raíz unitaria		
Exógenas:	Intercepto y tendencia		
Rezagos:	1 con 12 como máxi- mo, CIA		
		Estadístico t	Probabilidad
Test estadístico Dickey-Fuller Aumentado		-3.29	0.071
Valores críticos:	Nivel 1%	-4.03	
	Nivel 5%	-3.44	
	Nivel 10%	-3.14	
Hipótesis nula:	Log del PIB ind tiene raíz unitaria		
Exógenas:	Intercepto		
Rezagos:	9 con 12 como máxi- mo, CIA		
		Estadístico t	Probabilidad
Test estadístico Dickey-Fuller Aumentado		1.40	0.999
Valores críticos:	Nivel 1%	-3.49	
	Nivel 5%	-2.88	
	Nivel 10%	-2.58	
Hipótesis nula:	D (log PIB ind) tiene raíz unitaria		
Exógenas:	Intercepto		
Rezagos:	2 con 12 como máxi- mo, CIA		
		Estadístico t	Probabilidad
Test estadístico Dickey-Fuller Aumentado		-6.89	0.000
Valores críticos:	Nivel 1%	-3.48	
	Nivel 5%	-2.88	
	Nivel 10%	-2.58	

En el cuadro 3.2 se presentan las pruebas de estacionariedad Dickey-Fuller Aumentada (DFA) para el PIB total y en el cuadro 3.3 las del PIB industrial suponiendo como hipótesis nula la existencia de raíz unitaria tanto en los niveles de las series como en sus primeras diferencias. El número de rezagos utilizados se generó de manera automática usando el Criterio de Información de Akaike (CIA). Basándose en los t-estadísticos DFA para las series en niveles no se puede rechazar la hipótesis nula de raíz unitaria, mientras que en diferencias si se puede rechazar la existencia de raíz unitaria. De esta forma la evidencia sugiere que los niveles del *log* del PIB total e industrial son integrados de orden 1.

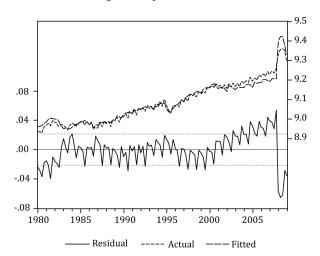
Dado que para las dos variables consideradas se presenta raíz unitaria en los niveles y estacionariedad en primeras diferencias, es teóricamente posible realizar el test de cointegración. La relación de largo plazo entre el logaritmo del PIB industrial y el PIB total puede ser detectada por el método de cointegración desarrollado por Engle y Granger (1987).

De acuerdo con este método, se estima una ecuación estática (todas las variables se expresan en el tiempo t) por mínimos cuadrados ordinarios, a la cual se denomina regresión de cointegración (cuadro 3.4). Se verifica que los parámetros sean estadísticamente significativos y tengan el signo correcto. El siguiente paso consiste en verificar que los residuos generados por la regresión de cointegración sigan un proceso estacionario. De ser así, se puede afirmar que las series consideradas mantienen una relación estable o de equilibrio de largo plazo y por tanto están cointegradas. Sin embargo, ello no permite hablar de causalidad, ni de endogeneidad o exogeneidad. Esto se prueba hasta el final.

Cuadro 3.4 Ecuación de cointegración

Variable de- pendiente:	Log PIB total			
Método:	Mínimos Cuadra- dos Ordinarios			
Muestra:	1980.1-2009-1			
Observaciones:	117			
Variable	Coeficiente	Error estándar	Estadístico t	Probabilidad
С	2.0208	0.1325	15.24	0.000
Log PIB indus- trial	0.8288	0.0155	53.29	0.000
R2 ajustada	.96	F estadís- tico	2840.6	

Los resultados de la regresión de cointegración presentan los signos correctos y son estadísticamente significativos por lo que se procedió a realizar la prueba de raíz unitaria sobre los residuos de este modelo. En el cuadro 3.5 se presenta el resultado de la prueba de raíz unitaria de los residuos, lo que confirma que estos siguen un proceso estacionario y por tanto las series están cointegradas.⁴⁰


Cuadro 3.5 Prueba de cointegración DFA

Hipótesis nula:	Residuos con raíz unitaria		
Exógenas:	Intercepto		
Rezagos:	4		
		Estadístico t	Probabilidad
Test estadístico Dickey-Fuller Au- mentado		-3.92	0.0026
Valores críticos:	Nivel 1%	-3.48	
	Nivel 5%	-2.88	
	Nivel 10%	-2.58	

⁴⁰ Otra técnica de cointegración que se pudo utilizar es la de Johansen (1988).

Conociendo que las series están cointegradas el paso siguiente consiste en realizar un modelo de corrección del error con los residuos generados en la regresión de cointegración con rezago, que debe pasar todas las pruebas de correcta especificación de modo que permita realizar el test de causalidad de Granger. De acuerdo con Engle y Granger (1987) si las series están cointegradas, la causalidad existe en alguna dirección. En el cuadro 3.6 se presenta dicho modelo.

Gráfica 3.1 Bondad de ajuste de la ecuación de cointegración por el método de EG

Cuadro 3.6 Modelo de corrección del error

Variable de- pendiente:	D(PIB total)			
Método:	Mínimos Cuadra- dos Ordinarios			
Muestra:	1980.2-2009-1			
Observaciones:	116			
Variable	Coeficiente	Error estándar	Estadístico t	Probabilidad
С	.001247	0.09141	5.56643	0.0000

D(PIB indus- trial)	.508867	0.00134	0.92526	0.3568
Residuos (-1)	344001	0.10075	-3.41415	0.0009
R2 ajustada	.40	F esta- dístico	40.03	

Errores estándar & covarianza consistentes con Heterocedasticidad de White.

El modelo muestra una bondad de ajuste aceptable y la ecuación estimada cumple satisfactoriamente con todos los supuestos de correcta especificación. El término -3.44001 es el Mecanismo de Corrección del Error (MCE) y presenta el signo correcto. El signo negativo actúa para reducir el desequilibrio en el próximo periodo, en este caso trimestralmente. Si las variables están en desequilibrio en el periodo t - 1, entonces el MCE opera para restaurar las variables gradualmente hacia el equilibrio en el periodo t o en el futuro. Así, la desviación del PIB total respecto a su nivel de equilibrio de largo plazo se corrige trimestralmente en un 33% aproximadamente. Dicho lo anterior, se aplicó el test de causalidad de Granger para verificar la dirección de causalidad.

Cuadro 3.7 Test de causalidad de Granger entre el PIB total y PIB industrial

Rezagos:	10		
Muestra:	1980.1- 2009-1		
Observaciones:	107		
Hipótesis nula:		Estadístico F	Probabilidad
PIB t no es causa Granger del PIB ind		1.40	0.19004
PIB ind no es causa Granger del PIB t		3.49	0.00067

La validez de la primera ley de Kaldor se demostró al realizar el test de causalidad de Granger; en función de este el PIB industrial es causa del PIB total y no ocurre lo mismo a la inversa, aunque debe señalarse que el resultado depende del número de rezagos que se utilicen.

Para las series de PIB total y PIB manufacturero se siguieron los mismos pasos, los cuales se reportan en el anexo 2, aquí sólo se presenta el test final de causalidad de Granger. Los resultados confirman que el PIB manufacturero causa el PIB total, pero también que el PIB total causa el PIB manufacturero o bien que existe una causalidad bidireccional, resultado que es perfectamente compatible con el marco teórico.

Cuadro 3.8 Test de causalidad de Granger entre el PIB total y PIB manufacturero

Rezagos:	8		
Muestra:	1980.1- 2009-1		
Observaciones:	109		
Hipótesis nula:		Estadístico F	Probabilidad
PIB t no es causa Granger del PIB man		4.99837	0.00004
PIB man no es causa Granger del PIB t		3.82187	0.00064

3.4.1.3 Estimaciones en panel

Los modelos de panel combinan observaciones de corte transversal y de series de tiempo. En este sentido, se incorpora mayor información que en cada uno de los modelos anteriores por separado. En el trabajo se decidió estimar tres modelos de panel estáticos: con intercepto común, con efectos fijos y con efectos aleatorios para los periodos 1980-1988-1994-2000-2006.⁴¹ En el cuadro 3.9 se presentan los resultados para los tres modelos usando la ecuación 3.5 y en el cuadro 3.10 los resultados usando la ecuación 3.9.

⁴¹ Respecto a la discusión técnica de los modelos refiérase al manual del programa Eviews 6.0.

${\bf Cuadro~3.9}~{\rm Estimaci\'on~de~la~primera} \\ {\rm ley~de~Kaldor~en~M\'exico~con~panel,~ecuaci\'on~3.5^{42}} \\$

	Modelo con	intercepto c	omún	
Variable depen- diente:	qNM			
Método:	Mínimos Cuadrados Agrupados			
Número de seccio- nes cruzadas:	32			
Observaciones:	128			
Variable	Coeficiente	Error estándar	Estadístico t	Probabilidad
С	0.975430	0.119256	8.179326	0.0000
qM	0.181641	0.063316	2.868784	0.0048
R2 ajustada	.05	F	8.22	.004833
	Modelo o	le efectos fij	ios	
Variable depen- diente:	qNM			
Método:	Mínimos Cuadrados Agrupados			
Número de seccio- nes cruzadas:	32			
Observaciones:	128			
Variable	Coeficiente	Error estándar	Estadístico t	Probabilidad
qM	0.101197	0.083301	1.214834	0.2274
R2 ajustada	.18	F	1.89	.009362
	Modelo de e	efectos aleat	orios	
Variable depen- diente:	qNM			
Método:	Mínimos Cuadrados Generalizados (componentes de la varianza)			
Número de seccio- nes cruzadas:	32			

⁴² Los efectos fijos y aleatorios para cada estado, tanto de la ecuación $3.5\ como$ $3.9\ aparecen en el anexo <math>2.$

0	bservaciones:	128			
	Variable	Coeficiente	Error estándar	Estadístico t	Probabilidad
	С	0.996184	0.136428	7.301911	0.0000
	qM	0.162203	0.065680	2.469596	0.0149
	R2 ajustada	.25			

Cuadro 3.10 Estimación de la primera ley de Kaldor en México con panel, ecuación 3.9

	Modelo con	intercepto co	mún	
Variable depen- diente:	qNM			
Método:	Mínimos Cuadrados Agrupados			
Número de seccio- nes cruzadas:	23			
Observaciones:	92			
Variable	Coeficiente	Error estándar	Estadísti- co t	Probabilidad
С	1.047961	0.125164	8.372675	0.0000
QM/QTEqM	0.323043	0.110733	2.917309	0.0045
R2 ajustada	.07	F	8.51	.004458
	Modelo	de efectos fijo	s	
Variable depen- diente:	qNM			
Método:	Mínimos Cuadrados Agrupados			
Número de seccio- nes cruzadas:	23			
Observaciones:	92			
Variable	Coeficiente	Error estándar	Estadísti- co t	Probabilidad
QM/QTEqM	0.304106	0.129914	2.340816	0.0222
R2 ajustada	.31	F	2.79	.000556

	Modelo de efectos aleatorios					
Variable depen- diente:	qNM					
Método:	Mínimos Cuadrados Generalizados (componentes de la varianza)					
Número de seccio- nes cruzadas:	23					
Observaciones:	92					
Variable	Coeficiente	Error estándar	Estadísti- co t	Probabilidad		
С	1.054416	0.152167	6.929316	0.0000		
QM/QTEqM	0.314516	0.111730	2.814962	0.0060		
R2 ajustada	.41					

Los resultados de la estimación de los tres modelos confirma la existencia de una correlación positiva entre el PIB manufacturero (ponderado y sin ponderar) y el PIB no manufacturero, especialmente en el modelo de efectos aleatorios. De las dos ecuaciones estimadas la de mejor bondad de ajuste es la 3.9, lo cual resulta comprensible, ya que se utilizaron datos de los 23 estados que mayor participación tienen en el PIB manufacturero.

A partir de estos resultados y los expuestos antes, se confirma la primera ley de Kaldor para la economía mexicana, tanto a nivel macroeconómico como a nivel regional, conclusión que se había adelantado de forma descriptiva en el capítulo segundo. Teniendo esto como base explicativa, es posible afirmar que la insuficiencia dinámica del sector manufacturero se encuentra detrás de la desaceleración en el crecimiento económico de México, con lo que se confirma parcialmente la hipótesis de investigación. El paso siguiente consiste en evaluar la ley Verdoorn-Kaldor.

3.4.2.1 Estimaciones de sección cruzada

La estimación de la ley Verdoorn-Kaldor ofrece evidencia de la existencia o no de rendimientos crecientes a escala en la industria manufacturera y con ello es posible determinar la existencia o no de procesos de causación acumulativa virtuosa. Su cumplimiento significa que la productividad se determina de manera endógena por el ritmo de acumulación, además de confirmarse el incremento del empleo como consecuencia del incremento en la producción. Desde la perspectiva kaldoriana, el ritmo de expansión del mercado es lo que incrementa la productividad, el supuesto esencial es la existencia de rendimientos crecientes a escala, derivados de las interacciones de los factores estáticos y dinámicos asociados con los incrementos de la escala de producción industrial.

A partir de la información estadística del capítulo 2, se sabe que el empleo no ha crecido en México, debido a los magros resultados en materia de crecimiento. El país, en lo general, se encuentra con un nivel de producción manufacturera estancado y por ende con un estancamiento en la producción y el empleo total, lo que al mantenerse por un periodo largo de tiempo ha provocado la reducción del bienestar.

Teniendo en cuenta lo anterior, en el cuadro 3.11 se presentan los resultados de estimar la ley Verdoorn para el periodo 1980-2003,⁴³ se utilizaron siete versiones diferentes, con la mayoría de ellas se demuestra la existencia de rendimientos crecientes en las manufacturas mexicanas.

⁴³ Los resultados para los subperiodos 1980-1993 y 1993-2003 aparecen en el anexo 2.

Cuadro 3.11 Ley Verdoorn-Kaldor: Mínimos Cuadrados Ordinarios, 1980-2003

				Ecuación			
	(3.10)	(3.11)	(3.12)	(3.12a)	(3.13)	(3.17)	(3.18)
Variables independientes\Dependientes.	р	eM	qΜ	qM	p	ift	qM
Constante	064* (-3.19)	.095* (4.22)	.096* (3.35)	.105* (3.24)	.079* (2.80)	341* (-6.02)	.534* (.000)
qM	.469* (14.38)	.589* (17.15)	-	-	-	.947* (10.41)	-
eM	-	-	1.15* (22.77)	1.15* (20.81)	.339* (5.94)	-	-
ift	-	-	-	-	-	-	.431* (.000)
n(entidades federativas y ramas ma- nufactura)	288	288	288	234	288	288	288
R2ajustado	.50	.68	.68	.68	.13	.40	.40
F estadístico	297.00	616.66	616.66	496.83	44.89	197.90	197.90
D.W.	1.97	1.80	1.73	1.72	1.73	1.98	1.55
Prueba JB normali- dad+	6.20 (.044)	30.72 (.000)	229.87 (.000)	194.95 (.000)	27.54 (.000)	545.36 (.000)	113.30 (.000)
Prueba Whi- te Heteroce- dasticidad	20.95 (.000)	19.70 (.000)	.971 (.379)	.561 (.571)	8.15 (.000)	6.92 (.001)	9.05 (.000)
Prueba Ramsey forma fun- cional	.238 (.625)	1.99 (.158)	.058 (.808)	.170 (.679)	.334 (.563)	.0002 (.988)	2.99 (.084)

Prueba t entre paréntesis

Errores estándar & covarianza consistentes con Heterocedasticidad de White.

Las ecuaciones 3.10 y 3.11 representan las interpretaciones de Kaldor de la ley y con ambas se obtuvieron resultados

^{*} Coeficiente estadísticamente significativo al 5%

⁺ Probabilidad entre paréntesis, la hipótesis nula es que se tiene normalidad, homocedasticidad y buena forma funcional.

satisfactorios, aunque la primera es considerada muchas veces como espuria al construirse la productividad con el producto manufacturero como numerador.

Si se supone que las elasticidades del producto respecto al trabajo y al empleo son iguales, lo cual es bastante probable para la manufactura, un coeficiente de Verdoorn de 0.5 implica un grado de rendimientos crecientes de 1.33, lo cual es muy alto para cualquier estándar (McCombie, 2007: 183). La ecuación 3.10 arrojó un coeficiente de Verdoorn estadísticamente significativo y menor a la unidad, bajo esta forma los rendimientos crecientes en las manufacturas regionales serían de 1.36. La ecuación 3.10 supera perfectamente la prueba de forma funcional, pero no así la de heterocedasticidad y normalidad. La ecuación 3.11 indica que ante un incremento de 10% en el PIB manufacturero el empleo se incrementa en 5.89% o que existen rendimientos crecientes en la producción manufacturera. Para esta ecuación se tiene un mejor ajuste respecto a la anterior, al igual que la 3.10 sólo supera el test de buena forma funcional. A partir de estas dos ecuaciones se tiene información como para no rechazar la hipótesis de investigación, pero en aras de solventar mejor esta decisión se estimaron cinco ecuaciones más.

Las ecuaciones 3.12, 3.12a y 3.13 son las interpretaciones de Rowthorn (1975) de la ley. Las dos primeras ecuaciones presentaron una excelente bondad de ajuste y superaron dos de las tres pruebas realizadas sobre los residuos, a partir de ellas se puede confirmar la presencia de rendimientos crecientes en las manufacturas, sólo que en lugar de considerar el PIB manufacturero como regresor se considera el empleo. La ecuación 3.13 indica que la productividad es dependiente del empleo, con una bondad de ajuste reducida y una buena forma funcional. A partir de estas cinco ecuaciones se verifican los postulados kaldorianos señalados en el capítulo uno, según los cuales el crecimiento económico es el resultado tanto de fuerzas de oferta que actúan sobre la demanda como

de demanda que actúan sobre la oferta, siendo en los países en desarrollo como México los factores de demanda (extensión del mercado) más importantes que los de oferta.

Si la demanda es el factor que restringe el crecimiento económico y se agrega el factor capital a la estimación de la ley, entonces de acuerdo con Ledesma (2000: 57), la mejor estimación sería la ecuación 3.17 (versión de Kaldor), en caso contrario sería la 3.18 (versión de Rowthorn). La estimación de las dos ecuaciones exhibió una bondad de ajuste bastante aceptable, la primera superó dos de las tres pruebas realizadas sobre los residuales, mientras que la tercera sólo una de ellas. Usando la primera el grado de rendimientos crecientes en las manufacturas regionales es de 1.05, un valor bastante pequeño. Con base en la ecuación 18 se tienen rendimientos decrecientes a escala.

3.4.2.2 Estimaciones de series de tiempo

Con las series de tiempo de la productividad laboral manufacturera y el PIB manufacturero se realizaron pruebas de estacionariedad, para después verificar la existencia de una relación a largo plazo entre las series y la dirección de causalidad. En el cuadro 3.12 y 3.13 se presentan las pruebas de raíces unitarias realizadas. Para ambas series se demostró que presentan raíz unitaria en niveles y estacionariedad en diferencias por lo que las dos son integradas de primer orden. El número de rezagos se escogió de forma automática usando el Criterio de Información de Akaike.

Cuadro 3.12 Prueba de raíces unitarias para la productividad laboral manufacturera 1994.1-2008.12

Hipótesis nula:	Log de Pro tiene raíz		
impotesis nuia.	unitaria		
Exógenas:	Intercepto y tendencia		
Rezagos:	12 con 13 como máxi- mo, CIA		
		Estadístico t	Probabilidad
Test estadístico Dickey-Fuller Aumentado		-1.62	.780
Valores críticos:	Nivel 1%	-4.01	
	Nivel 5%	-3.43	
	Nivel 10%	-3.14	
Hipótesis nula:	Log de Pro tiene raíz unitaria		
Exógenas:	Intercepto		
Rezagos:	12 con 13 como máxi- mo, CIA		
		Estadístico t	Probabilidad
Test estadístico Dickey-Fuller Aumentado		.422	.983
Valores críticos:	Nivel 1%	-3.46	
	Nivel 5%	-2.87	
	Nivel 10%	-2.57	
Hipótesis nula:	D (log Productividad) tiene raíz unitaria		
Exógenas:	Intercepto		
Rezagos:	8 con 12 como máxi- mo, CIA		
		Estadístico t	Probabilidad
Test estadístico Dickey-Fuller Aumentado		-4.47	.0003
Valores críticos:	Nivel 1%	-3.46	
	Nivel 5%	-2.87	
	Nivel 10%	-2.57	

Cuadro 3.13 Prueba de raíces unitarias para el PIB manufacturero 1994.1-2008.12

Hipótesis nula:	Log del PIB man tiene		
impotesis itula.	raíz unitaria		
Exógenas:	Intercepto y tendencia		
Rezagos:	1 con 12 como máxi- mo, CIA		
		Estadístico t	Probabilidad
Test estadístico Dickey-Fuller Aumentado		-1.69	0.749
Valores críticos:	Nivel 1%	-4.01	
	Nivel 5%	-3.43	
	Nivel 10%	-3.14	
Hipótesis nula:	Log del PIB man tiene raíz unitaria		
Exógenas:	Intercepto		
Rezagos:	9 con 12 como máxi- mo, CIA		
		Estadístico t	Probabilidad
Test estadístico Dickey-Fuller Aumentado		-0.48	0.889
Valores críticos:	Nivel 1%	-3.46	
	Nivel 5%	-2.87	
	Nivel 10%	-2.57	
Hipótesis nula:	D (log PIB man) tiene raíz unitaria		
Exógenas:	Intercepto		
Rezagos:	2 con 12 como máxi- mo, CIA		
		Estadístico t	Probabilidad
Test estadístico Dickey-Fuller Aumentado		-5.67	0.000
Valores críticos:	Nivel 1%	-3.46	
	Nivel 5%	-2.87	
	Nivel 10%	-2.57	

Dado que para las dos variables consideradas se presenta raíz unitaria en los niveles y estacionariedad en las primeras diferencias, es teóricamente realizar el test de cointegración. La relación de largo plazo entre el logaritmo de la productividad manufacturera y el PIB manufacturero puede ser detectada por el método de cointegración desarrollado por Engle y Granger (1987).

Cuadro 3.14 Ecuación de cointegración

Variable de- pendiente:	Log Producti- vidad			
Método:	Mínimos Cuadrados Ordinarios			
Muestra:	1994.1-2008-12			
Observacio- nes:	117			
Variable	Coeficiente	Error estándar	Estadístico t	Probabilidad
С	-5.9055	0.3789	-15.5855	0.0000
Log PIB ma- nufacturero	1.0594	0.0464	22.8304	0.0000
R2 ajustada	.74	F estadístico	521.23	

Los resultados de estimar la ecuación de cointegración se muestran estadísticamente significativos y la bondad de ajuste resultó aceptable, lo que se puede ver en el cuadro 3.14 y la gráfica 3.2. El producto manufacturero parece tener una relación de largo plazo con la productividad manufacturera.

Gráfica 3.2 Bondad de ajuste de la ecuación de cointegración por el método de EG

El segundo paso del procedimiento de cointegración de Engle y Granger (1987) consiste en realizar pruebas de raíces unitarias con los residuos de la ecuación de cointegración. Los resultados rechazan la hipótesis de estacionariedad en los residuos, o lo que es lo mismo, se acepta la hipótesis de raíz unitaria. Por ello se concluye que no existe cointegración entre la series.⁴⁴

⁴⁴ Se aplicó también el test de cointegración de Johansen y el resultado fue que no existía cointegración, excepto cuando se permitía una tendencia cuadrática determinística con 4 rezagos.

Cuadro 3.15 Prueba de cointegración

Hipótesis nula:	Residuos con raíz unitaria		
Exógenas:	Intercepto		
Rezagos:	13		
		Estadístico t	Probabilidad
Test estadístico Dickey-Fuller Aumentado		-1.4794	0.5417
Valores críticos:	Nivel 1%	-3.4699	
	Nivel 5%	-2.8788	
	Nivel 10%	-2.5760	

Con estas dos series, a pesar de no existir cointegración estadística, se realizó el test de causalidad de Granger para verificar la relación de causalidad entre las dos variables. El resultado es que existe entre ambas series una retroalimentación o causalidad bidireccional, es decir, la productividad causa al producto y el producto causa a la productividad.

Cuadro 3.16 Test de causalidad de Granger entre el PIB manufacturero y la productividad

Rezagos:	10		
Rezagos.	10		
Muestra:	1994.1- 2008.12		
Observaciones:	170		
Hipótesis nula:		Estadístico F	Probabilidad
PIB man no es causa Granger de la Pro		3.76788	0.00015
Pro no es causa Granger del PIB man		3.56462	0.00029

3.4.2.3 Estimaciones en panel

Finalmente, se realizaron estimaciones con datos agrupados en panel, con información de la Encuesta Industrial Mensual y los Censos Industriales, las ecuaciones utilizadas fueron la 3.11, 3.14, 3.15 y 3.16. Para cada una de éstas se estimaron tres modelos de panel estáticos: con intercepto común, con efectos fijos y con efectos aleatorios, para el periodo 1994-2008 en las ecuaciones 3.11 (estados) y 3.11 (ramas), y 1980-1993-2003 en las ecuaciones 3.14, 3.15 y 3.16.

Cuadro 3.17 Estimación de ley Verdoorn-Kaldor en México con panel, ecuación 3.11 (estados)

	Modelo con	intercepto c	omún	
Variable dependiente:	eM			
Método:	Mínimos Cuadrados Agrupados			
Número de secciones cruzadas:	19			
Observaciones:	266			
Variable	Coeficiente	Error estándar	Estadístico t	Probabilidad
С	-0.239380	0.023478	-10.19596	0.0000
qM	0.227936	0.022508	10.12696	0.0000
R2 ajustada	.27	F	102.55	.0000
	Modelo	de efectos fij	os	
Variable dependiente:	eM			
Método:	Mínimos Cuadrados Agrupados			
Número de secciones cruzadas:	19			
Observaciones:	266			
Variable	Coeficiente	Error estándar	Estadístico t	Probabilidad

qM	0.224398	0.023125	9.703564	0.0000
R2 ajustada	.26	F	6.02	.0000
	Modelo de efectos aleatorios			
Variable dependien- te:	eM			
Método:	Mínimos Cuadrados Generalizados (componentes de la varianza)			
Número de secciones cruzadas:	19			
Observaciones:	266			
Variable	Coeficien- te	Error estándar	Estadísti- co t	Probabili- dad
С	-0.240465	0.023500	-10.23248	0.0000
qM	0.228982	0.022562	10.14912	0.0000
R2 ajustada	.24			

De la estimación de la ecuación 3.11 con datos estatales se obtuvo un coeficiente de Verdoorn de 0.22, con los tres modelos, y una bondad de ajuste de las estimaciones adecuada. De esta forma se tiene evidencia de la correlación positiva existente entre el crecimiento del producto manufacturero y el empleo para la economía mexicana. La estimación de esta misma ecuación con datos de los subsectores de la manufactura mostró similares resultados, el coeficiente de Verdoorn en este segundo caso fue de 0.31 y la bondad de ajuste fue notoriamente más elevada.

Con datos de panel es posible afirmar que en las manufacturas mexicanas existen rendimientos crecientes a escala, el resultado es muy importante, ya que la fuente de información para estas estimaciones excluye a las empresas maquiladoras, por lo que sólo se encuentran representadas las empresas manufactureras no maquiladoras. La pregunta obvia en este momento es ¿por qué si existen rendimientos crecientes en las manufacturas, la economía mexicana presenta bajas tasas de crecimiento económico?

Cuadro 3.18 Estimación de ley Verdoorn-Kaldor en México con panel, ecuación 3.11 (ramas)

				-
	Modelo con	intercepto c	omún	
Variable depen- diente:	eM			
Método:	Mínimos Cuadrados Agrupados			
Número de sec- ciones cruzadas:	9			
Observaciones:	126			
Variable	Coeficiente	Error estándar	Estadístico t	Probabilidad
С	-0.006982	0.001433	-4.870679	0.0000
qM	0.315885	0.030905	10.22126	0.0000
R2 ajustada	.45	F	104.47	.0000
	Modelo	de efectos fij	os	
Variable depen- diente:	eM			
Método:	Mínimos Cuadrados Agrupados			
Número de sec- ciones cruzadas:	9			
Observaciones:	126			
Variable	Coeficiente	Error estándar	Estadístico t	Probabilidad
qM	0.315587	0.032730	9.642063	0.0000
R2 ajustada	.43	F	11.54	.0000
	Modelo de	efectos aleat	orios	
Variable depen- diente:	eM			
Método:	Mínimos Cuadrados Generalizados (componentes de la varianza)			
Número de sec- ciones cruzadas:	9			
Observaciones:	126			

Variable	Coeficiente	Error estándar	Estadístico t	Probabilidad
С	-0.006983	0.001014	-6.888356	0.0000
qM	0.316162	0.030191	10.47205	0.0000
R2 ajustada	.40			

Como ya se había dicho antes, la ley Verdoorn-Kaldor por si misma, o no condicionada, es demasiado simple como para capturar la variación completa del crecimiento económico, por ello se hace necesario condicionarla, adicionando variables de control que sean importantes. En el cuadro 3.19 aparecen los resultados de estimar la ecuación 3.14.

Para los tres modelos se tiene que únicamente la variable clásica de producto manufacturero resultó estadísticamente significativa, el coeficiente de especialización y el tamaño medio de los establecimientos manufactureros no fueron significativas; de hecho el signo del coeficiente de especialización no fue el esperado, ya que se suponía que entre más especializados en actividades manufactureras se encontraran los estados, mayor productividad tendría que generarse como resultado de la experiencia o "aprender haciéndolo"; el signo de la variable TME si fue el adecuado.

Cuadro 3.19 Estimación de la ley Verdoorn-Kaldor en México con panel, ecuación 3.14

Modelo con intercepto común				
Variable depen- diente:	pi			
Método:	Mínimos Cuadrados Agrupados			
Número de secciones cruzadas:	32			
Observaciones:	576			
Variable	Coeficiente	Error estándar	Estadístico t	Probabilidad

С	-0.058337	0.021256	-2.744566	0.0062
qM	0.520277	0.020838	24.96756	0.0000
QLi	-0.008262	0.008258	-1.000570	0.3175
TME	0.019873	0.017206	1.154978	0.2486
R2 ajustada	.53	F	221.02	.0000
	Mode	lo de efectos	fijos	
Variable depen- diente:	pi			
Método:	Mínimos Cuadrados Agrupados			
Número de secciones cruzadas:	32			
Observaciones:	576			
Variable	Coeficiente	Error estándar	Estadístico t	Probabilidad
qM	0.527871	0.021859	24.14937	0.0000
QLi	-0.004513	0.008589	-0.525476	0.5995
TME	0.023483	0.020434	1.149244	0.2510
R2 ajustada	.53	F	20.16	.0000
	Modelo (de efectos ale	atorios	
Variable depen- diente:	pi			
Método:	M		ados Generaliza es de la varianza	
Número de secciones cruzadas:	32			
Observaciones:	576			
Variable	Coeficiente	Error estándar	Estadístico t	Probabilidad
С	-0.055991	0.020480	-2.733949	0.0065
qM	0.518362	0.020734	25.00065	0.0000
TME	-0.009266	0.008240	-1.124501	0.2613
QLi	0.019130	0.016671	1.147513	0.2516
R2 ajustada	.52			

Los cuadros 3.20 y 3.21 presentan los resultados de estimar las ecuaciones 3.15 y 3.16, las cuales incorporan el efecto del capital. La primera es la versión de Kaldor con la inclusión del capital y la segunda es la versión de Rowthorn. Ambos conjuntos de estimaciones fueron estadísticamente significativos y dieron resultados favorables en torno a la existencia de rendimientos crecientes en las manufacturas. Para la ecuación 3.15, en el primer modelo los rendimientos crecientes computados son de 1.84, para el segundo modelo son de 1.88 y de 1.82 para el modelo de efectos aleatorios. Para la ecuación 3.16 los rendimientos crecientes son menores y son de 1.045 en el caso del primer modelo 1.03 en el segundo y de 1.046 en el tercero.

Cuadro 3.20 Estimación de la Ley Verdoorn-Kaldor en México con panel, ecuación 3.15

Modelo con intercepto común					
Variable depen- diente:	$e_{_{M}}$				
Método:	Mínimos Cuadrados Agrupados				
Número de seccio- nes cruzadas:	32				
Observaciones:	576				
Variable	Coeficiente	Error estándar	Estadístico t	Probabilidad	
С	0.070397	0.013630	5.164704	0.0000	
$q_{_{\mathrm{M}}}$	0.505408	0.034657	14.58324	0.0000	
$k_{_{M}}$	0.074600	0.020812	3.584478	0.0004	
R2 ajustada	.60	F	443.32	.0000	
	Modelo	de efectos fijo	S		
Variable dependiente:	$\mathbf{e}_{_{\mathrm{M}}}$				
Método:	Mínimos Cuadrados Agrupados				

Número de seccio- nes cruzadas:	32			
Observaciones:	576			
Variable	Coeficiente	Error estándar	Estadístico t	Probabilidad
$q_{_{M}}$	0.494153	0.035430	13.94714	0.0000
$k_{_{M}}$	0.070756	0.020701	3.417945	0.0007
R2 ajustada	.60	F	27.80	.0000
	Modelo de	efectos aleato	rios	
Variable depen- diente:	$e_{_{M}}$			
Método:	Mínimos Cua		alizados (comp ianza)	onentes de la
Número de seccio- nes cruzadas:	32			
Observaciones:	576			
Variable	Coeficiente	Error estándar	Estadístico t	Probabilidad
С	0.069631	0.010866	6.408002	0.0000
$q_{_{M}}$	0.507411	0.022854	22.20261	0.0000
k _M	0.075332	0.015850	4.752889	0.0000
M	0.075552			

Cuadro 3.21 Estimación de la Ley Verdoorn-Kaldor en México con panel, ecuación 3.16

Modelo con intercepto común				
Variable dependiente:	$q_{_M}$			
Método:	Mínimos Cuadrados Agrupados			
Número de seccio- nes cruzadas:	32			
Observaciones:	576			
Variable	Coeficiente	Error estándar	Estadístico t	Probabilidad
С	0.090023	0.016260	5.536579	0.0000
e _M	0.908966	0.057069	15.92739	0.0000

k _M	0.136183	0.029769	4.574701	0.0000
R² ajustada	.61	F	468.25	.0000
	Modelo d	e efectos fijo	s	
Variable depen- diente:	$q_{_M}$			
Método:	Mínimos Cuadrados Agrupados			
Número de seccio- nes cruzadas:	32			
Observaciones:	576			
Variable	Coeficiente	Error estándar	Estadístico t	Probabilidad
e _M	0.895648	0.056719	15.79096	0.0000
$k_{_{M}}$	0.139713	0.030292	4.612150	0.0000
R² ajustada	.61	F	28.95	.0000
	Modelo de e	fectos aleator	rios	
Variable depen- diente:	$q_{_M}$			
Método:	Mínimos Cuad		ilizados (compo anza)	onentes de la
Número de seccio- nes cruzadas:	32			
Observaciones:	576			
Variable	Coeficiente	Error estándar	Estadístico t	Probabilidad
С	0.089611	0.014760	6.071288	0.0000
e _M	0.910908	0.041078	22.17512	0.0000
$q_{_{M}}$	0.135635	0.020900	6.489728	0.0000
R² ajustada	.61.			

Conviene recordar que si se supone que la demanda es la fuerza principal del crecimiento económico, la ecuación más importante es la 3.15. Con el ánimo de verificar que la presencia de rendimientos crecientes fuera estadísticamente significativa, se realizaron dos test de Wald, uno para el modelo de efectos fijos y otro para el de efectos aleatorios.

Los resultados confirman la existencia de rendimientos crecientes usando la ecuación 3.15 y se rechaza esta hipótesis usando la ecuación 3.16.⁴⁵

3.4.3 Tercera ley de Kaldor

El crecimiento de la demanda por productos industriales es, sin duda, la principal fuerza que determina el crecimiento de largo plazo de una economía, de esta forma se ha demostrado para el caso de la economía mexicana. Las dos primeras leyes de Kaldor cuentan con el respaldo necesario como para aceptarlas, en cambio la tercera ley no puede sostenerse para el caso de la economía mexicana. La estimación de la misma arrojó los signos que teóricamente se esperaban (con la excepción del modelo de efectos fijos), pero no fueron estadísticamente significativos, y la bondad de ajuste de los modelos fue pobre (cuadro 3.22).⁴⁶

Cuadro 3.22 Estimación de la tercera ley de Kaldor en México con datos en panel

Modelo con intercepto común				
Variable depen- diente:	$p_{_{PC}}$			
Método:	Mínimos Cuadrados Agrupados			
Número de seccio- nes cruzadas:	32			
Observaciones:	96			
Variable	Coeficiente	Error estándar	Estadístico t	Probabilidad
С	0.003204	0.001456	2.200236	0.0303
$q_{_{M}}$	0.106144	0.071202	1.490747	0.1394

⁴⁵ En el anexo 2 aparecen los test.

⁴⁶ En McCombie (1981) se encuentra un análisis sobre las razones por las cuales es difícil encontrar evidencia para esta ley.

e _{nm}	-0.010906	0.057424	-0.189925	0.8498	
R² ajustada	.00293	F	1.13	.3243	
Modelo de efectos fijos					
Variable depen- diente:	$p_{_{PC}}$				
Método:	Mínimos Cuadrados Agrupados				
Número de seccio- nes cruzadas:	32				
Observaciones:	96				
Variable	Coeficiente	Error estándar	Estadísti- co t	Probabili- dad	
$q_{_{M}}$	-0.014157	0.111454	-0.127023	0.8993	
e _{nm}	-0.024902	0.062542	-0.398160	0.6919	
R² ajustada	09	F	.757	.8056	
	Modelo de e	fectos aleat	torios		
Variable depen- diente:	$p_{_{PC}}$				
Método:	Mínimos Cuad	lrados Genera varia	lizados (compo inza)	onentes de la	
Número de seccio- nes cruzadas:	32				
Observaciones:	96				
Variable	Coeficiente	Error estándar	Estadístico t	Probabilidad	
С	0.002997	0.001363	2.199186	0.0303	
$q_{_{M}}$	0.123593	0.067651	1.826915	0.0709	
e _{nm}	-0.008003	0.059434	-0.134649	0.8932	
R² ajustada	23				

3.5 Conclusiones

La economía mexicana vive desde principios de los años ochenta un marcado proceso de desaceleración en su crecimiento económico. Cuando las instituciones de la economía, principalmente el Estado, se encontraban abocadas a generar

una industria sólida que pudiera satisfacer los requerimientos del mercado interno el crecimiento fue excepcional. Las manufacturas y su crecimiento fueron el elemento dinámico en el pasado, desafortunadamente se incurrió en excesos de protección y se cometieron muchos errores, lo que obligó a cambiar de estrategia.

A principio de los ochenta, la economía vivió las consecuencias del agravamiento de una serie de problemas estructurales, que se quisieron corregir de forma radical abriendo la economía a las mercancías e insumos internacionales y vendiendo las empresas públicas que se consideraron ineficientes y poco estratégicas dentro de la nueva agenda de desarrollo nacional. Veintiocho años después, se puede decir, dados los resultados reportados en este documento, que la apertura externa y el fomento del libre mercado han sido ineficientes en su objetivo de lograr un crecimiento económico alto y sostenido.

La economía mexicana ha sido incapaz de crecer de manera elevada y sostenida y ello ha fomentado la pobreza, la marginación, la informalidad, la migración ilegal y la criminalidad; sin crecimiento el estado de subdesarrollo económico prevaleciente se magnifica. El empleo, variable básica del bienestar humano, ha estado ausente durante todos estos años. Sin crecimiento no se tiene empleo y sin empleo no hay ingresos y sin ellos el mercado no crece y se perpetúa el círculo vicioso de estancamiento económico.

A través de una serie de pruebas econométricas se ha demostrado la validez de la primera ley de Kaldor para la economía mexicana; es decir, se ha evidenciado que existe una elevada correlación entre la tasa de crecimiento del PIB manufacturero y la tasa de crecimiento del PIB no manufacturero; aún más, se ha establecido que para el periodo que va de 1980 al 2009 el PIB manufacturero es causa Granger del PIB total, un resultado que tiene consecuencias inmediatas en el diseño de política económica.

A partir de los resultados econométricos se confirma la información del segundo capítulo y se reconoce la existencia de una relación de largo plazo entre el PIB total y el PIB manufacturero en México, se reconoce que las manufacturas son el motor del crecimiento y el empleo en México.

El cálculo de la ley Verdoorn-Kaldor ha permitido demostrar que la productividad laboral manufacturera se ve alentada por el crecimiento del producto, o lo que es lo mismo, que existen rendimientos crecientes a escala en esta clase de actividades.

Pero existe una aparente contradicción que es preciso resolver ¿si las manufacturas operan con rendimientos crecientes, por qué entonces no se ha presentado un proceso de causación acumulativo virtuoso? Existen varias respuestas, con base en los resultados econométricos de este capítulo y lo presentado en los dos anteriores capítulos.

La primera es que posiblemente se estén capturando mal los rendimientos crecientes, lo que queda en evidencia al estimar las ecuaciones 3.16, 3.17 y 3.18, especialmente en esta última los rendimientos fueron decrecientes, con la primera el test de Wald no permite rechazar la hipótesis nula de rendimientos constantes y con la ecuación 3.17 los rendimientos crecientes son tremendamente reducidos.

La segunda es que las diversas estimaciones de la ley Verdoorn-Kaldor realizadas exhibieron un coeficiente de bondad del ajuste inferior el 0.68, lo que significa, de acuerdo con la teoría econométrica, que hay otros elementos que están impactando la productividad y que no han sido recogidos por los modelos propuestos. Lo que esto quiere decir es que existen factores que tal vez detienen el impacto positivo del crecimiento del producto manufacturero sobre la productividad o el empleo, o que quizá estos no han sido explicados y pueden ser útiles para la comprensión de la problemática del estancamiento.

Respecto a la tercera ley de Kaldor, se encontró que, aunque los coeficientes de las variables involucradas tienen el signo correcto, no resultaron estadísticamente significativas, además de mostrar una muy mala bondad de ajuste. No se puede aseverar que una reducción (incremento) en el empleo no manufacturero incrementa (decrementa) la productividad global, ni que un incremento (decremento) del PIB manufacturero incrementa (decrementa) la productividad global.

Con las estimaciones realizadas se concluye lo siguiente: las bajas tasas de crecimiento económico registradas en la economía mexicana están correlacionadas con la insuficiencia dinámica del sector manufacturero. Dado que la productividad (y el empleo) se determinan por el crecimiento de la producción manufacturera, éstas se mantienen deprimidas, lo que fortalece el proceso de estancamiento. El mercado (demanda) no tiene los suficientes incentivos como para incrementarse, de hecho con la nueva estrategia de mercado y enfoque exportador emprendida, se ha dado un paulatino descuido a la industria, ya que se parte del supuesto, según el cual sólo las empresas eficientes deben sobrevivir, lo que deja espacio únicamente a las grandes compañías manufactureras de capital nacional y/o extranjero (multinacionales) y a las maquiladoras de exportación que reciben toda clase de apoyos. A esto se agrega la reducción en la inversión pública, principalmente en infraestructura, la contracción del crédito bancario, la apreciación del tipo de cambio y la creciente desigualdad del ingreso.

CAPÍTULO IV

Recomendaciones de política económica para superar el estancamiento

América Latina posee una rica tradición de pensamiento autónomo e independiente que debe ser recuperada, revisada, renovada y aplicada para estimular la formulación de opciones estratégicas y políticas para el desarrollo industrial desde dentro.

Sunkel (1991)

4.1 Introducción

punto de partida para dar solución al estancamiento consiste en que el gobierno acepte la gravedad del problema y se comprometa en el corto, mediano y largo plazo a resolverlo. El ingrediente principal para que cualquier propuesta tenga éxito es que exista voluntad política, que se tenga un deseo sincero de cambiar las condiciones de la economía.

El crecimiento económico y el empleo se deben convertir en la máxima prioridad del Estado mexicano. Dicha tarea no puede lograrse si no se cuenta con el apoyo activo de la sociedad, de sus organizaciones civiles y laborales, de los grupos empresariales, los medios de comunicación y la academia. El diagnóstico realizado de la economía mexicana, en los últimos veintiocho años, muestra que los resultados del modelo adoptado han sido bastante limitados en términos de crecimiento del producto y empleo; el sector secundario y en especial las manufacturas ha sido severamente descuidadas, sumiendo a la economía en el estancamiento, lo que se ha sumado a las fuerzas que sostienen a México atrapado en el subdesarrollo.

En esta última parte del documento se hacen algunas recomendaciones (propias y de expertos en el tema) para solucionar el problema al que se enfrenta la economía mexicana. En primer lugar se hacen algunas propuestas en materia hacendaria, ya que se considera que buena parte de las soluciones pasan por una intervención activa del Estado, pero para ello se requiere que cuente con fuentes sanas de financiamiento y políticas macroeconómicas acordes con el objetivo de crecimiento. En la segunda parte, se sugieren elementos para la construcción de una política industrial para el crecimiento y el empleo.

Cabe aclarar que las siguientes proposiciones no constituyen un programa de gobierno o plan detallado de acción, simplemente son factores que podrían considerarse para el diseño de un conjunto virtuoso de políticas públicas.

4.2 La reforma hacendaria, requisito indispensable del cambio

El gobierno mexicano ha dependido durante años de los ingresos que proporciona el petróleo para financiar sus gastos, esta situación no es sustentable y obliga a realizar una reforma fiscal que considere los altos niveles de pobreza y concentración del ingreso.

La reforma hacendaria integral debe ajustarse a los siguientes principios generales (Cordera, et al, 2009: 21-23):

- Seguir una secuencia programada, que asuma la necesidad de contar cuanto antes con políticas anticíclicas y permita en el tiempo superar la fragilidad estructural de la hacienda pública mexicana, es decir, contribuir primero a la recuperación de la actividad y asegurar más adelante la sustentabilidad fiscal.
- Deben revisarse los ordenamientos legales que restringen el margen de maniobra de las políticas fiscal y monetaria y entorpecen la adopción de medidas anticíclicas. Un primer paso debe ser la revisión de Ley de Presupuesto y Responsabilidad Hacendaria, estableciendo una regla de balance fiscal estructural que permita ahorrar recursos en épocas de bonanza para ser gastados en épocas de crisis.
- Ser integral y satisfacer criterios de progresividad y de efectividad.
- Mantener una adecuada combinación entre las dos principales fuentes de tributación: impuestos directos (ISR) e indirectos (IVA).
- Eliminar todos los impuestos innecesarios, como el IETU y el IDE.
- Mejorar el sistema de administración e información tributaria, en especial la eficiencia de la recaudación y rendición de cuentas.

En relación al Impuesto Sobre la Renta:

- El ISR no debe ser sustituido, sino acentuarse su carácter progresivo e integral; ampliar los tramos de ingreso y elevar las tasas sobre los niveles existentes.
- Ampliar la base gravable, corrigiendo el sesgo actual contra los ingresos del trabajo respecto de los del capital y eliminando la deducción de gastos que no son estrictamente necesarios para llevar a la práctica las actividades de las empresas y las operaciones de la banca y de otros intermediarios financieros.

- Incorporar al régimen normal de tributación de las empresas a todas las actividades (incluyendo las agropecuarias) y hacer más riguroso el régimen de causantes menores.
- Se debe eliminar la porosidad que los regímenes especiales y de consolidación imponen al sistema tributario, así como los regímenes de excepciones y los tratamientos especiales.

En relación al Impuesto al Valor Agregado:

 Bajo las actuales circunstancias no es factible plantear una reforma al IVA más allá de eliminar los tratamientos especiales y excepciones, salvo el aplicable a alimentos y medicinas.

Otros impuestos:

 Una reforma hacendaria integral debe examinar la oportunidad de introducir gravámenes a las ganancias de capital, establecer un impuesto patrimonial y gravar las transacciones financieras.

Precios v tarifas:

Los precios y tarifas de los bienes y servicios que proporcionan el gobierno y las empresas públicas deben permitirles cubrir los costos y generar un excedente que facilite mantener el capital existente y ampliar la capacidad de producción. Si por alguna razón el gobierno federal (o un gobierno local) resuelve subsidiar cierta actividad, región, empresa o grupo de consumidores ello no debe repercutir en los estados financieros de las empresas públicas.

Federalismo fiscal:

 Se requiere una coordinación fiscal que dé certeza y seguridad a las entidades federativas, aumentando su participación tanto en la base participable como en el porcentaje.

- En materia de recaudación del impuesto predial es conveniente no exentar del mismo a las empresas públicas ni a las instalaciones gubernamentales.
- Un efectivo federalismo fiscal hace necesario incrementar la rendición de cuentas en el uso de los recursos en todos los niveles de gobierno.

4.2.1 Consideraciones sobre el gasto público

Para aumentar la eficacia de la política fiscal es importante, como punto de partida, hacer una revisión a fondo del gasto público. Este diagnóstico debe partir de un verdadero programa de austeridad. Además de incorporar presupuestos plurianuales:

- Es preciso aumentar la transparencia y reducir la discrecionalidad del gasto, poniendo énfasis en la fiscalización sobre los resultados.
- Aumentar el gasto en infraestructura y en programas sociales de alto impacto, en especial salud, educación, ciencia y tecnología.
- Robustecer la capacidad de auditoría plena, por parte del poder legislativo.
- Moderar los sueldos de los funcionarios públicos y eliminar otras prestaciones no contempladas en la ley, con frecuencia autootorgadas, como los bonos, los pagos por terminación de encargo, seguros médicos privados o el pago de colegiaturas.
- Revisar a fondo las estructuras del Estado mexicano para eliminar secretarías de Estado y programas redundantes, la excesiva proliferación de subsecretarías, jefaturas de unidad y mandos superiores que no se justifican para el ejercicio de sus funciones, así como oficinas de representación en entidades federa-

- tivas. Esta revisión debe abarcar a los tres poderes de la Unión y a los organismos autónomos.
- La función de control interno del Ejecutivo requeriría racionalizarse en una unidad administrativa que sustituya a la Secretaría de la Función Pública y la función sustantiva deberá recaer en la Auditoría Superior de la Federación.
- Debe reducirse de manera sustancial la contratación de tiempos y espacios de publicidad por parte de las diferentes instancias del sector público en los medios de comunicación.

Para Suárez Dávila (2010), la reforma hacendaria debe cumplir ciertas precondiciones básicas: 1) la oportunidad, se debe considerar el momento adecuado para ponerla en marcha, bajo un contexto electoral es poco factible que se apruebe cualquier cambio; 2) la Secretaría de Hacienda debe preparar un diagnóstico integral creíble de la situación fiscal del país: un Libro Blanco. Éste debe incluir información de lo que se recauda por los principales impuestos, con el suficiente desglose por grupos de ingreso, las estimaciones pertinentes de los subsidios fiscales, los montos de evasión, el impacto de la informalidad. Asimismo, debe contener un análisis de las principales opciones y su impacto recaudatorio; 3) convocar a un comité de expertos fiscales, los cuales rendirán un informe breve y concreto en el que evalúen el diagnóstico y formulen recomendaciones sobre las opciones; 4) la reforma debe tener una clara motivación social. Su objetivo no debe ser sólo recaudatorio, sino generar los recursos para cumplir con el objetivo de crecimiento; 5) reflejar un balance entre grupos sociales; 6) realizar una racionalización en la estructura de gasto del país; 7) avanzar del feudalismo al federalismo fiscal, pactando con los estados y municipios que cumplan con los objetivos de transparencia y rendición de cuentas, y hagan un esfuerzo equitativo en cobro de predial y servicios de recaudación; y 8) la reforma debe ser gradual, se deben dar pasos continuamente para garantizar que en el mediano plazo estará totalmente completada.

4.2.2 Política monetaria y sistema financiero

De acuerdo con Cordera, et al (2009), es fundamental revisar la política monetaria y financiera, que ha estado subordinada al objetivo único de procurar la estabilidad de precios sin considerar sus efectos negativos en el crecimiento. Desde 1999 la política monetaria se ha basado en un esquema de objetivos de inflación que contrasta con el mandato anual de la Reserva Federal de Estados Unidos, que toma decisiones de política monetaria tratando de obtener el mejor balance entre estabilidad de precios y crecimiento económico. Amparado en una interpretación extremadamente rigorista de su autonomía, el Banco de México, toma decisiones que no favorecen el crecimiento.

- Debe establecerse, mediante la reforma constitucional y legal pertinente, un mandato dual para el Banco de México que le obligue a considerar objetivos de crecimiento y empleo, y no solamente de inflación en la determinación de la política monetaria. Además, debe considerarse la posibilidad de que el Banco central redescuente papel de la banca comercial y de desarrollo.
- El Banco de México debe tener la obligación expresa de regular de forma escrupulosa al conjunto de agentes financieros del país. En coordinación con la Secretaría de Hacienda y la Comisión Nacional Bancaria y de Valores, debe fortalecer el control sobre los intermediarios financieros para evitar el lavado de dinero, el agiotismo, la evasión de impuestos y otras operaciones ilícitas.

- Debe recuperarse para la nación el control del sistema financiero, para que responda a los objetivos del desarrollo nacional, así como fomentar la expansión de la banca mexicana.
- Debe orientarse a la banca comercial para que otorgue crédito oportuno, suficiente y a tasas competitivas a los sectores productivos.
- Es oportuno establecer qué Afores y Sofoles deben canalizar el ahorro forzoso que captan a inversiones productivas en el territorio nacional.
- Fortalecer un sistema nacional de banca de desarrollo. Nacional Financiera para el desarrollo industrial;
 Financiera Rural para el campo; Banobras para infraestructura y federalismo; Bancomext para el comercio exterior; Federal Hipotecaria para la vivienda.
- Debe recuperarse la capacidad de la banca para realizar operaciones de primer piso y emitir bonos de desarrollo que le aseguren un fondeo adecuado.
- Es preciso definir para la banca de desarrollo una cartera de proyectos de largo plazo, así como dar prioridad, sobre todo a las pequeñas y medianas empresas.
 Es también importante racionalizar las acciones de rescate y apoyo financiero a grandes empresas con el fin de evitar desequilibrios mayores en el mercado de dinero y de capitales.
- La banca de desarrollo debe contribuir al desarrollo de las empresas y la puesta en marcha de proyectos rentables.

4.3 Política macroeconómica para el crecimiento

En México, uno de los mayores logros del actual modelo económico, tiene que ver con la estabilidad macroeconómica, pero se ha perdido de vista que ésta no constituye un objetivo por si mismo. La estabilidad económica es el medio a través del cual se puede lograr un crecimiento más dinámico y sustentable, pero no se le puede considerar un fin. El gran error de la actual política económica consiste en centrarse exclusivamente en la estabilidad, aún a costa del deterioro de los niveles de vida de la población.

El gobierno mexicano debe atender y adecuar el nivel entre la demanda y la oferta agregada, su composición entre bienes transables y no transables, cuidar del tipo de cambio, tasas de interés, inflación, finanzas públicas, entre otros, para alcanzar la meta principal que consiste en la generación de crecimiento económico y empleo.

Las políticas macroeconómicas deben contribuir al desarrollo, y para ello se requiere de un enfoque integral que considere sus impactos sobre el sector productivo, conciliando los equilibrios de las principales variables macro con los objetivos sociales, y trabajar para que las tendencias favorables se sostengan en el tiempo.

Los equilibrios macroeconómicos, además de incluir la meta de una inflación baja y finanzas públicas sanas, deberían incluir: déficit externo sostenible, baja participación de los pasivos netos de corto plazo en la deuda externa, inversión pública sostenida en capital físico y humano, tipo de cambio competitivo, tasas de interés que fomenten la inversión, elevado ahorro interno y transparencia del sistema financiero. Aunque son muchos requisitos y en la práctica pueden resultar complicados, son posibles y por ello pocas naciones lo logran.

El gobierno mexicano debería de considerar la acumulación de recursos en fondos de estabilización durante los periodos de auge, así como mejorar el balance público, incrementar las reservas internacionales, evitar la apreciación de la moneda, regular las entradas de capital y adelantar deuda externa.

Todo lo contrario durante los periodos recesivos, donde se debe hacer uso de los recursos que se ahorraron para gastarlos y estimular la demanda efectiva para superar la recesión. El gasto tiene que ser eficiente y transparente, de lo contrario termina generando más problemas que soluciones.

La recomendación central y la de muchos especialistas, consiste en mantener políticas activas, evitar las limitaciones que imponen agentes externos, se necesita aplicar políticas macroeconómicas de carácter anticíclico. Aunque también, las políticas macroeconómicas deben ser flexibles y adaptarse a las circunstancias, es posible que durante ciertos periodos se requiera de políticas procíclicas.

Esta tarea no es nada fácil, ya que de acuerdo con French-Davis (2005), como producto de la integración financiera internacional, muchos líderes de los países emergentes están viviendo el *síndrome del doble electorado*, ya que son elegidos por los ciudadanos, los cuales votan por ellos en función de sus promesas de campaña, las cuales de ordinario giran en torno a la aplicación de políticas que redundarán en un mayor bienestar, pero por otro lado son "elegidos" por aquellos que realizan fuertes inversiones financieras en el país.

La crisis económica reciente en los mercados financieros, ha puesto en evidencia la incompatibilidad existente entre los deseos de los ciudadanos e inversionistas financieros, dicha contradicción tiene consecuencias negativas para la formación de capital.

Una política macroeconómica para el crecimiento debe considerar reducir las transferencias netas al exterior, ya que el servicio de la deuda externa capta una proporción significativa del ahorro interno. La deuda debe reducirse para posibilitar un incremento de los fondos disponibles para la inversión productiva.

También se debe aumentar el ahorro y situar al sistema financiero al servicio del desarrollo productivo, se necesita lograr un equilibrio entre el poder de los agentes con inquietudes productivistas y los especializados en actividades financieras.

Una buena política macroeconómica debe promover las exportaciones manufactureras, para que generen efectos de

arrastre sobre el resto de sectores de actividad económica. Lo anterior requiere un tipo de cambio competitivo, esto es, mantener un tipo de cambio real alto; de acuerdo con Rodrik (2008), la devaluación de la moneda estimula el crecimiento al incrementar el volumen de mercancías exportadas.

Con el afán de complementar las ideas anteriores y ofrecer una estrategia coherente de política macroeconómica, que sirva como sustento de la política industrial para la competitividad, a continuación se exponen las propuestas sugeridas en la materia por Ortiz (2007: 210-211).

Política financiera.

- Recuperar la capacidad de conducción y regulación de las autoridades monetarias y financieras sobre las diversas instituciones financieras, particularmente los bancos.
- Promover el desarrollo del mercado de capitales, creando condiciones de seguridad a los pequeños ahorradores, en los diversos niveles en los que pueden participar. Establecer mecanismos de defensa de los ahorradores frente a las acciones de grupos grandes.
- Reducir y controlar las prácticas oligopólicas.
- Volver a establecer un sistema de reservas como garantía de las instituciones de ahorro.
- Eliminar los subsidios que se vienen inyectando al sistema bancario.
- Replantear el marco institucional para el desarrollo de organizaciones de ahorro popular, potenciando su capacidad de crecimiento y autogestión.

Política monetaria

- Replantear la independencia del Banco de México.
- Se deben establecer mecanismos de control sobre el Banco de México.
- El Banco de México debe establecer entre sus objetivos el crecimiento económico.

• Es urgente evitar que la política monetaria siga generando costos sociales por la sobrevaluación cambiaria.

Política fiscal

- Ampliar la base de recaudación fiscal.
- Eliminar las fugas en la recaudación.
- Actuar en contra de la corrupción existente en el sistema de aduanas.
- Replantear el régimen fiscal de Pemex.
- La reforma fiscal es indispensable para generar los recursos necesarios para el desarrollo industrial de largo plazo.
- Se debe de impedir que el Estado asuma déficits privados.
- Crear facultades constitucionales para que el gobierno pueda aplicar políticas anticíclicas.
- Establecer estándares de calidad del gasto público, precisando la calidad que debe aportar sobre el conjunto de actividades que son de su responsabilidad, como son: educación, seguridad pública, infraestructura, industria, seguridad social, salud y administración.

4.4 Hacia una nueva política industrial para superar el estancamiento

Para que el país crezca de forma elevada y sostenida, se requiere de una estrategia macroeconómica enfocada a tal objetivo y de una política industrial para la competitividad. Es necesario volver a industrializar el país, continuar el trabajo que se dejó pendiente a principios de los ochenta, construir el núcleo endógeno de dinamización tecnológica que tanto necesitamos. La industrialización generaría los empleos necesarios y reactivaría el resto de los sectores.

La nueva política industrial que propongo debe tomar en cuenta los errores del pasado y las condiciones actuales, tanto

locales y nacionales como internacionales. México es hoy una economía abierta al comercio internacional y el Estado cuenta con recursos limitados. Ya no es posible, como antes, gastar grandes cantidades de recursos. Para la competitividad, tiene que equilibrar la participación estatal con la iniciativa individual, debe evitar interferir en las decisiones que toman los empresarios. Sugiero un Estado de fomento productivo y no convertirlo en productor y sustituto del mercado. La experiencia internacional indica que se debe promover la libertad económica, pero también sugiere la necesidad de consolidar la participación estatal.

Un México en crecimiento requiere evitar falsas ideologías entre Estado y libre mercado, los hacedores de política económica deben guiarse por criterios pragmáticos, haciendo lo que es mejor de acuerdo a las circunstancias y lo que tenga menores efectos negativos tanto en el corto como en el largo plazo. Se debe buscar maximizar el bienestar de la ciudadanía en todo momento.

Una política económica pragmática y no dogmática es fundamental, se necesita reconocer que los modelos teóricos son representaciones simplificadas y significativas de la realidad; es preciso aceptar que no responden a todas las realidades y a todos los tiempos. La doctrina liberal acotada ha fallado por dos razones: la primera, porque no promueve una libertad total, y la segunda, porque no entiende que la realidad mexicana necesita algo más que mercados libres, los problemas estructurales arrastrados durante siglos no pueden ser solucionados de manera automática.

La implementación adecuada de una estrategia industrial exige una alianza virtuosa entre los sectores público y privado, un gobierno activo y capacitado, que opere en un marco institucional acorde con la envergadura de su estrategia y sus prioridades.

Hoy en día existe un consenso amplio (no necesariamente en el gobierno) en torno a la necesidad de una nueva inserción dinámica en la economía internacional y de una acción deliberada para reducir el desempleo y promover un mayor crecimiento, condición necesaria para consolidar el desarrollo. En el logro de estos objetivos se valora el desempeño del mercado, pero con una clara advertencia sobre sus fallas e insuficiencias, lo mismo se asume para el Estado. El enfoque propuesto se basa en el pragmatismo más que en la disputa ideológica entre Estado *versus* mercado.

4.4.1 Diez principios para el diseño de una política industrial

Aunque no existen recetas universales en materia de política industrial, sí existen elementos comunes que se extraen de la experiencia de naciones exitosas, los cuales pueden ser tomados en cuenta para el diseño de una nueva política industrial en México. De acuerdo con Rodrik (2005), hay diez principios que es necesario considerar:

- Conceder incentivos y subsidios a las actividades "nuevas". El principal propósito de la política industrial consiste en diversificar la economía y generar nuevas áreas de ventaja comparativa. De aquí se concluye que los incentivos se deben enfocar en las actividades económicas que son nuevas para la economía.
- Establecer puntos de referencia y criterios claros de éxito y fracaso de los proyectos subsidiados. La política industrial es un proceso experimental. Es la naturaleza del espíritu emprendedor saber que no todas las inversiones van a generar dividendos y que no todos los esfuerzos de promoción resultarán exitosos.
- Aplicar una cláusula de extinción automática de los subsidios. Una forma de asegurar que los recursos tanto físicos como humanos no permanecerán atados por mucho tiempo a actividades que no generan dividendos consiste en establecer un término hasta el

- cual se mantendrán los apoyos. Si una actividad no termina por funcionar se le deben cancelar los apoyos. Esta medida exige que tanto las autoridades como los agentes privados sean capaces de reconocer un error.
- Concentrarse en actividades económicas (transferencia o adopción de tecnología, capacitación, entre otras) en lugar de sectores industriales. Esto permite estructurar el apoyo para corregir las fallas del mercado.
- Conceder subsidios solamente a actividades con evidentes posibilidades de tener efectos multiplicadores y que puedan servir como ejemplo.
- Delegar la política industrial a instituciones de probada competencia y transparencia. La tarea de la política industrial debe implementarse por aquellos organismos que sean los más capaces y transparentes, evitando hasta donde sea posible la creación de nuevos. Evitar la burocratización y el gigantismo estatal.
- Adoptar medidas para garantizar que estas instituciones estén supervisadas por una persona(s) interesada(s) en los resultados y con autoridad política del más alto nivel. La vigilancia permite un mejor desempeño de las instituciones y personas encargadas de la implementación de estrategias.
- Garantizar que las instituciones que aplican las políticas mantengan canales adecuados de comunicación con el sector privado. Los burócratas deben mantenerse cerca de los empresarios e inversionistas, para tener la mejor información posible y tomar las mejores decisiones. No es la burocracia sino el sector privado, quien sabe de dónde provienen los problemas y, por lo tanto, cuál es la respuesta adecuada a ellos; por eso, se necesita un mecanismo que permita al sector público, a los organismos y a la burocracia conseguir la información necesaria. Si no logra hacerlo, si el modelo de regulación es un modelo impuesto desde arri-

- ba en el que se mantienen las distancias, la política puede resultar ineficaz e incluso negativa.
- Entender que muchas veces se eligen proyectos "perdedores" en el marco de políticas industriales óptimas. Por esta razón se deben mantener salvaguardas, anticipando esta clase de situación. Si los gobiernos no cometen errores, lo único que significa es que no están haciendo con la suficiente fuerza su tarea de promoción del desarrollo industrial. Sólo si se tiene un conocimiento ilimitado se pueden evitar los errores y elegir siempre los proyectos más rentables.
- Respaldar actividades de fomento, capaces de evolucionar, para que el ciclo de descubrimiento sea constante.
 Las estrategias en ningún momento deben ser estáticas, deben modificarse continuamente dependiendo de los errores y aciertos que se tengan. Los organismos públicos deben tener la capacidad de reinventarse.

Adicional a lo anterior, la política industrial debe incorporar medidas disciplinarias y recompensas, es decir, tanto incentivos como castigos. Los incentivos son necesarios, ya que si en el proceso de descubrimiento de costos los empresarios encuentran que una nueva actividad no es rentable no invertirán en ella.

En el pasado, durante la etapa de sustitución de importaciones, tal mecanismo era inexistente, únicamente se ofrecían apoyos y no se esperaba que rindieran cuentas sobre el destino de los mismos, se manejaban los recursos con mucha discrecionalidad, la nueva política industrial para la competitividad debe evitar ésta práctica.

4.5 Política industrial para el crecimiento en México

La estrategia propuesta consiste en sustituir el actual modelo de crecimiento hacia afuera por uno centrado tanto en lo interno como en lo externo, sin olvidar los factores endógenos (tridimensional), se trata, desde un punto de vista estructuralista, de "crecer desde dentro". El nuevo modelo industrial que se propone está basado en tres dimensiones: interna, externa y endógena (ver figura 4.1).

La nueva política industrial en México debe seguir favoreciendo las exportaciones aprovechando los diversos acuerdos comerciales firmados y sacando partido de la localización geográfica estratégica, pero también debe continuar con la sustitución de importaciones para articular las cadenas productivas y reducir el coeficiente de importación, para que no existan restricciones externas al crecimiento económico y el empleo.

Aunado a esto, se propone fortalecer el motor endógeno de la economía, o lo que es lo mismo, crecer desde dentro, no hacia adentro, como fue en el pasado. Se trata de potenciar todas las ventajas que ofrece una economía de tamaño mediano, como la mexicana. El enfoque desde dentro reconoce la importancia que tiene dinamizar otros sectores y subsectores industriales, especialmente la construcción que presenta fuertes encadenamientos hacia adelante y atrás; de lo que se trata es de generar condiciones para no depender exclusivamente de un solo sector de actividad económica. Las manufacturas son importantes, pero no deben ser el único sector de interés; entre otros, se debe prestar atención especial al sector primario, ya que es la fuente básica de ventajas comparativas para un país.

Crecimiento hacia Crecimiento desde Estrategia afuera dentro Transición Nueva Industrialización Modelo industrialización vía exportaciones tridimensional 10 principios para el diseño de la política industrial Apertura Macroeconomía para el desarrollo Políticas Liberalización industrial Estabilización Política de competitividad industrial Políticas sectoriales de competitividad Estabilidad macro Resultados Crecimiento de: dinámica exportador; * Producto manufacturero con desarticulación * Productividad laboral productiva. * Empleo . Baia competitividad Círculos virtuosos de causación Estancamiento económico Empresarios líderes v Estado promotor PROTAGONISTAS Mentalidad productivista

Figura 4.1 Transición al nuevo modelo de industrialización para crecer desde dentro

Fuente: elaboración con base en Villarreal (2005: 801).

Trabajadores comprometidos

En materia de instrumentos, la nueva política industrial tridimensional con un enfoque desde dentro requiere otorgar incentivos a las actividades y a los empresarios para mejorar sus niveles de productividad, eficiencia operacional, capacitación continua, reinversión de utilidades, encadenamientos productivos e innovaciones constantes.

Como se ha mencionado antes, los apoyos deben estar claramente justificados y deben tener un periodo de gracia para el alcance de los objetivos, estableciendo además un sistema de premios y castigos para que exista un óptimo aprovechamiento de los escasos recursos fiscales con los que cuenta el Estado mexicano para la labor de promoción.

Es necesario ceptar que el empresario es líder del proceso y el Estado funge como promotor y facilitador del desarrollo

industrial, lo cual implica contar con una política de competitividad industrial que tenga dos frentes: el primero es el ámbito empresarial, donde los empresarios son los actores primordiales de la competitividad, y el segundo es el Estado como promotor y facilitador del crecimiento competitivo del aparato industrial (Villarreal, 2005: 801).

Pero también es preciso reconocer que sin trabajadores comprometidos no se puede avanzar, la nueva estrategia tiene que ganarse la credibilidad de aquellos hacia los que va dirigida y en esto los trabajadores son un elemento crucial; de los trabajadores y empresarios se espera que actúen con una lógica productivista, es decir, que piensen cotidianamente en mecanismos para aumentar su productividad y con ello sus ingresos, lo que redundará en un incremento de la producción industrial y por ende en el resto de la economía.

El objetivo central de la nueva política industrial debe ser incrementar la tasa de crecimiento del PIB manufacturero, ya que de lograrse, se incrementaría la tasa de crecimiento de la productividad laboral manufacturera y por esta vía la tasa de crecimiento de la productividad total de la economía.

Los objetivos específicos propuestos son los siguientes:

- Elevar la tasa de crecimiento y competitividad de las ramas y subsectores industriales del país, consolidando y desarrollando sus potencialidades.
- Aumentar el nivel de integración de las cadenas productivas, especialmente entre las grandes empresas y las PYMEs para generar *clusters* productivos y desarrollar auténticos polos regionales de crecimiento, empleo e innovación.
- Reducir paulatinamente la dependencia de insumos importados, principalmente los de alto contenido tecnológico.
- Incrementar las exportaciones de productos industriales, básicamente de aquellos de alto valor agrega-

- do y bajo componente importado, con el fin de generar divisas y superar la brecha externa al crecimiento.
- Aumentar los ingresos de los trabajadores, de acuerdo al incremento registrado en su productividad, para que se consolide el mercado interno y sea posible la aparición de círculos virtuosos de acumulación.
- Apoyar y alentar las actividades económicas que, tanto históricamente como internacionalmente, han mostrado tener los mayores efectos de demostración y de encadenadores.
- Fortalecer la capacidad tecnológica de las empresas y propiciar la incorporación de tecnologías modernas y competitivas.
- Apoyar la formación de alianzas estratégicas entre grandes empresas nacionales y líderes tecnológicos internacionales.
- Fomentar el desarrollo de las micro, pequeñas y medianas empresas industriales para lograr con ello la desconcentración de la actividad en el territorio nacional.
- Promover una mayor capacidad propia de gestión, de innovación y de generación de divisas en las empresas, que fortalezca la independencia económica nacional.
- Preservar, mantener y aprovechar en mayor medida la infraestructura con que cuenta el país, así como construir nueva de acuerdo con las necesidades existentes.
- Para crecer, es necesario que la política industrial se vincule con la política macroeconómica y las políticas enfocadas a sectores no manufactureros.
- Revisar periódicamente que no exista contradicción entre los objetivos propuestos de política industrial y de ésta con el resto de políticas públicas del país.

Una vez expuestos los objetivos que debe cumplir la nueva política industrial, enseguida se expone una serie de elementos que habrán de ser considerados para la creación de una exitosa política industrial en México.

El primero de ellos tiene que ver con el aspecto organizativo, ya que la política industrial requiere que las diferentes instituciones responsables de su formulación, ejecución y evaluación sean reordenadas. Esto evitaría conflictos y superposiciones y ayudaría a la convergencia de acciones.

Es importante señalar que no se requiere crear nuevas instituciones, sino trabajar con los recursos con los que se cuenta; se debe aspirar a la eficiencia, es decir, el gobierno hará la mayor cantidad de actividades para el cumplimiento de los objetivos de la política industrial con la menor cantidad de recursos. Si se quiere tener éxito, una de las prioridades será evitar el despilfarro y la malversación de los fondos.

El presidente de la República será el principal responsable de la puesta en marcha de la nueva política industrial y ésta se tornará en la tarea primordial de su mandato; se sugiere la modificación de la actual Secretaría de Economía para convertirla en la Secretaría de Competitividad Industrial y Crecimiento, cambiando totalmente sus objetivos, enfocando sus funciones al cumplimiento del plan nacional de política industrial para el crecimiento y el empleo.

Aunado a esto, se recomienda la constitución de un Sistema Nacional de Política Industrial, que sería orientado y coordinado por un Consejo Nacional para el Diseño y Evaluación de la Política Industrial, compuesto por todos los secretarios de Estado involucrados, los gobernadores de los estados, el gobernador del Banco de México, las diferentes cámaras empresariales, organismos sindicales, representantes de las principales instituciones académicas y el presidente de la República en calidad de autoridad suprema.

Dicho órgano se encargaría de diseñar, implementar, coordinar y, sobre todo, evaluar las acciones emprendidas en la materia. Con la actuación de este Consejo se espera que la política industrial sea consistente y flexible. Consistente porque debe reconocerse que los objetivos no podrán ser alcanzados en un periodo corto de tiempo y flexible porque los cambios en el entorno (nacional e internacional) hacen necesario replantear las estrategias, o bien puede ser que se hayan seleccionado actividades "perdedoras" para su apoyo o simplemente se cometieron errores en la ejecución que es preciso corregir. A diferencia del pasado, se espera que la política industrial no se mantenga inmutable, todo lo contrario, se confía en que sea un proceso y no un decálogo a cumplir a toda costa.

En materia de concertación con los agentes productivos, la nueva política industrial se guiará por dos ideas supremas: complementariedad y realismo. Las acciones emprendidas por el gobierno serán congruentes con la planeación realizada por los empresarios, quienes son los que conocen a la perfección la actividad que realizan. El Estado no debe entorpecer, sino alentar, la actividad industrial, de ahí la importancia de la complementariedad.

El realismo, porque no se pueden inventar soluciones desde un escritorio ni basados en el conocimiento que tienen los hacedores de política económica, sino que es preciso que sean los empresarios los que propongan lo que debe hacerse, en el marco de la política industrial acordada en el Consejo Nacional para el Diseño y Evaluación de la Política Industrial.

Un problema que inevitablemente salta a la vista, es que las actividades burocráticas se incrementan ante tantos objetivos, por ello se alentará un sano equilibrio entre Estado y mercado. En este sentido, es importante que haya la mayor libertad para la iniciativa privada, respetando las reglas del juego impuestas por el Estado. La implementación de la política industrial no es nada sencilla.

Es por ello que otro elemento a considerar es la calidad de la gestión pública, la cual depende de la coherencia institucional, de la clara delimitación de objetivos, de la eficacia de los instrumentos y de la capacidad administrativa y funcionaria. Esto obliga a plantearse objetivos realistas y flexibles para no sobrestimar la capacidad del gobierno.

Más que la cantidad, importa la calidad de la intervención pública en la actividad económica, la que debe corresponder a los desafíos de innovación institucional que impone la mundialización. Se necesita un sector público calificado para apoyar las actividades de fomento productivo, regulación y estímulo a la calidad; con legitimidad social para generar un consenso en torno a las tareas para el crecimiento, con un funcionamiento transparente, controlable y sujeto a evaluaciones periódicas o extraordinarias (Rosales, 1994: 77).

Es una tarea insoslayable impedir que el sector manufacturero se desarrolle de manera aislada, tal y como ha ocurrido con el sector maquilador. Para lograr escapar de la etapa actual de estancamiento económico se requiere trabajar en todos los sectores y en todas las regiones al mismo tiempo, enfocándose centralmente, claro está, en aquellas que ya han sentado algún precedente, como ocurre en el centro y norte del país.

El carácter que asume el ritmo de progreso tecnológico no permite marginar ninguna actividad económica; los límites entre los sectores primario, secundario y terciario tienden a hacerse difusos. Se requiere una mayor integración interna del aparato manufacturero y una relación cada vez más estrecha entre el desarrollo de la industria y el de otras actividades, tales como la agricultura, la construcción, la minería y los servicios sociales: educación, salud, etcétera. La tarea consiste en plantear complejos productivos dinámicos, con gran capacidad de articulación interindustrial e intersectorial, con alto grado de autonomía, eslabonamiento y arrastre económico (Marcos 1988: 10).

Un punto bastante polémico es el referente a la descentralización regional de la actividad productiva. Con la firma y entrada en vigor del TLCAN, existe suficiente evidencia que indica que las actividades manufactureras, en cierta medida,

se desplazaron del centro a la frontera norte de México;⁴⁷ los esfuerzos por desconcentrar la actividad manufacturera en México por lo regular han resultado infructuosos, por ello no se ha considerado como un objetivo explícito de la nueva política industrial, ya que podría consumir recursos que serían mejor utilizados en otras labores de fomento, tales como la innovación e incorporación de progreso tecnológico.

Se debe tener en cuenta que no es posible que la industria en su conjunto cubra toda la gama de metas nacionales en lo que se refiere, por ejemplo, a la captación de divisas, la independencia tecnológica, la descentralización y el desarrollo regional, etcétera; algunas industrias pueden contribuir en un sentido y otras no y ello debe evaluarse a la luz del entendimiento pleno de su alcance (Martínez del Campo, 1985: 340).

En el círculo académico subyace la idea de que la actividad industrial debe contribuir en forma directa a la solución de diversos problemas nacionales, particularmente el referente a la desigualdad regional. En general, se ha perdido de vista que la industrialización tiene sus propios obstáculos y que no es fácil que simultáneamente resuelva o participe de manera significativa en la solución de muchos de los grandes problemas nacionales.

Han habido en el país graves fallas de localización de industrias importantes al confundir, o por lo menos traslapar, unos propósitos con otros. Tampoco puede propenderse a un desarrollo industrial uniforme en el territorio nacional; debe haber muchas regiones, entidades, localidades, etcétera, donde se acentúen las actividades primarias o terciarias, según sea el caso (Martínez del Campo, 1985: 344-345).

Aunque a nivel nacional se requiere una industria manufacturera diversificada, al interior del país resulta complicado diversificar la actividad económica, ya que existen fuerzas centrípetas (economías de escala, urbanización, localización,

aglomeración y costos de transporte) que obligan a mantenerla concentrada.

A partir del conocimiento teórico e histórico, es preciso reconocer que la concentración de la actividad económica es un rasgo inherente del sistema de producción capitalista moderno y que lo único que se puede hacer por aquellas entidades en las que no se localizan actividades manufactureras dinámicas es incentivar los sectores de actividad en los que poseen ventajas comparativas (comercio, servicios, agricultura, minería, etcétera). No todas las regiones del país pueden ser manufactureras, este principio pragmático de la política industrial debe quedar claro y dejar de lado los discursos en los que se propone que la política industrial favorezca la desconcentración territorial.

Respecto a la desconcentración de la manufactura se pueden decir dos cosas más: La primera es que si en el país se promueve y aplica un plan de desarrollo de infraestructura que conecte de forma eficiente por tierra, mar y aire el país es posible que la actividad se desconcentre un poco, pero todo depende de la calidad y extensión de la infraestructura que se desarrolle. La segunda es que los gobiernos locales pueden dedicar parte de sus recursos a la atracción de inversiones a sus estados, algo que ya se viene haciendo, aunque de manera un poco descoordinada y con poca energía.

Otra manera de atacar el problema de la concentración de la actividad manufacturera es por medio de la difusión de una red de pequeñas y medianas empresas orientadas básicamente a los mercados regionales. El apoyo sistemático a las PYMEs permite enfrentar un conjunto de rezagos y deformaciones características del desarrollo industrial del país en el curso de las últimas décadas (Marcos, 1988: 20-21). Con una orientación apropiada de política concertada —pública y privada—, las PYMEs pueden desempeñar el doble rol de promover el desarrollo económico y al mismo tiempo la esta-

bilidad social a un nivel local y regional muy concreto por los caminos siguientes (de María y Campos, 1999: 30-31):

- Favoreciendo el autoempleo, particularmente entre jóvenes y mujeres.
- Mejorando la productividad y la calidad de la producción en los mercados locales.
- Generando redes de empresas especializadas que constituyan puentes entre las economías locales y regionales con las nacionales, así como con las economías internacionales.
- Contribuyendo a la generación de empleo, pero también de nuevas actividades económicas.
- Promoviendo un clima estimulante a la innovación empresarial, organizacional y tecnológica.
- Fortaleciendo un sistema económico y social, que sea capaz de aprovechar las ventajas de la integración regional dentro de un esquema abierto y competitivo.

En la nueva política industrial para el crecimiento se deja de lado la industria petrolera, porque por sus características requiere un plan particular. Las actividades petroleras son fundamentales para el desarrollo industrial de México, principalmente la petroquímica. La razón de esto estriba en la abundancia relativa de recursos naturales de que se dispone y de que la mayor parte de equipos que requiere pueden ser fabricados en el país, ya que se trata de unidades de proceso, por lo general, sencillas o menos complicadas que las requeridas por otras industrias. Es una actividad que permite agregar sucesivamente valor a las materias primas, así como a la diversa gama de productos intermedios y semifinales. Los planes de desarrollo de la petroquímica deberán hacerse públicos y discutirse ampliamente para que tengan la solidez y el respaldo que se requiere y permitan una continuidad que

rebase los estancos sexenales (Martínez del Campo, 1985: 363).⁴⁸

Un penúltimo elemento a considerar es el papel que juegan las empresas transnacionales. La nueva política para la competitividad industrial debe ser realista y considerar su existencia. Es esencial que las autoridades mantengan una vigilancia permanente y firme posición negociadora para lograr equilibrios en la distribución de beneficios. Las empresas transnacionales tienen mecanismos propios de operación que no responden a políticas nacionales, se debe conciliar esto con las medidas que se intentan aplicar para reindustrializar al país.

El último elemento a considerar es el siguiente: ¿hasta qué grado ha influido en los pobres resultados del proceso de industrialización en México, el hecho de que la legislación y otras disposiciones oficiales se hayan aplicado erráticamente, tanto por los distintos criterios de los funcionarios en turno, como por la simple omisión administrativa y hasta por asociación delictiva o intereses creados? ¿No se tendría en esos casos una industria más sana si simplemente se hubieran manejado con estricto apego a la letra y el espíritu, las innumerables disposiciones, programas y proyectos de las múltiples entidades oficiales a lo largo de los últimos veintiocho años? ¿Es posible tener un sistema gubernamental menos corrupto? (Martínez del Campo, 1985: 27).

Y aún en los casos en que no hayan existido diversas formas de corrupción, ¿cuánta ignorancia y burocratismo habrán sido también las causas directas de esas desviaciones en los objetivos? ¿Cuánta falta de coordinación entre dependencias e instituciones —incluso con pugnas entre ellas—no habrá determinado la marcha deficiente de muchas industrias? Éstas y otras consideraciones deben ser tomadas

⁴⁸ Una lectura actual e interesante respecto al petróleo, la petroquímica y la empresa encargada de su manejo, operación, procesamiento y venta se encuentra en Ibarra (2008).

en cuenta al momento de diseñar un programa completo de política industrial en México para superar el estancamiento y alentar el empleo.

4.6 Conclusiones

Superar el estancamiento económico en México requiere de una nueva política industrial que tenga como objetivo central elevar la tasa de crecimiento del PIB manufacturero. Su diseño debe privilegiar el enfoque desde dentro y centrarse en tres dimensiones: externa, interna y endógena. Adicional a esto, es urgente una política macroeconómica congruente con este objetivo, y de políticas sectoriales y regionales pertinentes.

Para que la política industrial coordinada por el Estado y liderada por los empresarios y trabajadores pueda tener éxito, son imprescindibles los recursos, lo que implica realizar una reforma hacendaria que ayude a diversificar la fuente de los ingresos públicos, dejar de depender del petróleo, de la misma forma es necesario elevar la calidad del gasto público y realizar recortes en aquellas áreas que no afectan el cumplimiento de las tareas fundamentales del Estado mexicano.

La transparencia y buen manejo de los recursos es otro de los elementos a privilegiar en el diseño, ejecución y evaluación de la nueva política industrial para el crecimiento económico y el empleo, donde habrá rendición de cuentas, no se permitirá la discresionalidad y la corrupción será sancionada con severidad.

Finalmente, el éxito de la nueva política industrial dependerá de la voluntad política, del deseo sincero por parte de las autoridades de todos los niveles, de la disposición que se tenga para convertir a México en la nación líder de Latinoamérica. En este bicentenario, es posible sentar las bases de la superación del estancamiento y reiniciar el camino hacia el desarrollo.

CONCLUSIONES GENERALES

na vez revisada la teoría y verificada su validez con datos de la economía mexicana, se puede asegurar con un elevado porcentaje de confiabilidad estadística, que la causa principal, más no la única, del estancamiento económico en México de 1982 al 2010, obedece a la insuficiencia dinámica del sector industrial manufacturero.

La industria manufacturera es el motor del crecimiento económico, es portadora y difusora del progreso tecnológico, es un sector integrador del resto de actividades productivas; por su alto contenido tecnológico, de innovación y complejidad, normalmente sus productos presentan una elevada elasticidad precio e ingreso de la demanda, con lo que también tienen términos de intercambio favorables, las manufacturas integradas en cadenas productivas flexibles y dinámicas con alto contenido nacional favorecen el crecimiento económico.

En México dicho sector no ha crecido como debería, entre otras cosas, porque el proceso de sustitución de importaciones iniciado en la década de los cuarenta no terminó de completarse, la industrialización se truncó, lo que evitó la formación de un nucleó endógeno de dinamización tecnológica; a lo anterior se le suma el proceso de apertura externa,

desregulación y privatización iniciado en los ochenta, reforzado con la entrada en vigor del TLCAN. La industrialización incompleta y las políticas del actual modelo han mermado el crecimiento manufacturero, lo que ha conducido a una reducción de la productividad. En consecuencia se tiene un modelo de causación circular acumulativa vicioso, donde los bajos niveles de crecimiento del sector manufacturero reducen la productividad, lo que a su vez disminuye el crecimiento manufacturero, el crecimiento del empleo y del resto de sectores de la economía.

El estancamiento económico prevaleciente en México tiene solución. Se requiere de una política macroeconómica e industrial para el crecimiento y empleo. Es necesario reconocer que las actuales políticas no han promovido el bienestar, resulta urgente cambiarlas. De hecho, se necesita una reforma del modelo económico, en la cual se reconozcan los errores del pasado y se consideren las condiciones nacionales e internacionales vigentes.

Los hallazgos de esta investigación son consistentes con los obtenidos por una serie de destacados investigadores nacionales e internacionales. A la insuficiencia dinámica manufacturera habría que agregarle la baja tasa de inversión, principalmente pública. La apreciación del tipo de cambio, la caída en el financiamiento bancario y la elevada dependencia que tiene la economía mexicana del ciclo económico estadounidense, entre otros factores.

La economía sobrevuela con un motor sumamente dañado, nuestro avión (economía nacional) se esfuerza por alcanzar su destino que es el desarrollo, desafortunadamente el no tomar medidas a tiempo y el haber fortalecido los mecanismos que deterioran el motor (manufacturas) ha provocado que continuamente nos retrasemos (crisis periódicas), que seamos afectados de sobremanera por las condiciones climáticas ajenas a las ya de por si desvencijadas condiciones de nuestro avión. Los últimos treinta años han dejado claro que se vive un fenómeno iatrogénico, en donde la enfermedad (estancamiento) se magnifica por las recomendaciones del médico (hacedores de política económica).

Los resultados económicos obtenidos durante los años de operación del actual modelo dan cuenta de la catástrofe:

- De 1982 a 2010 el PIB total creció un 2.1% en promedio anual
- El PIB per cápita 0.46%, entre 1982 y 2008 se crearon un promedio anual de 354 306 empleos en el sector formal de la economía
- La tasa de crecimiento del PIB manufacturero de 1982 a 2009 fue de 1.88% promedio anual
- Entre el 2000 y 2009 la población ocupada total creció un 1.30% promedio anual, mientras que la ocupada en las manufacturas se redujo un 1.25%
- El empleo precario pasó de poco más de 13 millones de personas a poco más de 16 millones.

Para finalizar, a la pregunta ¿qué se necesita para crecer?, se puede responder fácilmente, en función de la investigación presentada a lo largo de estas páginas. El crecimiento económico elevado y sostenido, requisito necesario para el desarrollo, es posible si se crean las condiciones para que las manufacturas se comporten de forma dinámica. Se debe soldar el círculo virtuoso de causación acumulativa, dicha tarea le corresponde al Estado en cooperación con los empresarios y sociedad civil, en un marco de privilegio a la libertad.

Bibliografía

- Aglietta, Michel, 1979, *A Theory of Capitalist Regulation: the U.S. experience*, Londres, Verso.
- Bairam, Erkin, 1987, "The Verdoorn Law, Returns to Scale and Industrial Growth: A Review of the Literature", *Australian Economic Papers*, vol. 26, núm. 48, pp. 20-42.
- ---, 1991, "Economic Growth and Kaldor's Law: the Case of Turkey, 1925-1978", *Applied Economics*, vol. 23, núm. 8, pp. 1277-1280.
- Blaug, Mark, 2001, *Teoría económica en retrospectiva*, México, Fondo de Cultura Económica.
- Blecker, Robert, 2007, "External Shocks, Structural Change, and Economic Growth in Mexico, 1979-2006", *Political Economy Research Institute*, documento de trabajo, diciembre, núm. 157.
- Blum, Roberto, 2001, "Las políticas económicas y la transformación política de México", en Luis Rubio, coord., *Políticas económicas del México contemporáneo*, México, Consejo Nacional para la Cultura y las Artes y Fondo de Cultura Económica, pp. 25-49.
- Bortz, Jeffrey y Stephen Haber, 2002, *The Mexican Economy,* 1870-1930: Essays on the Economic History of Institutions, Revolution, and Growth, Stanford, Stanford University Press.
- Boyer, Robert, 1987, "Technical Change and the Theory of Regulation", en http://bit.ly/aVXcNo, consultado el 6 de junio de 2008.
- ---, 1990, *The Regulation School: a Critical Introduction*, Nueva York, Columbia University Press.
- ---, 2000, "Is a Finance-led Growth Regime a Viable Alternative to Fordism: a Preliminary Analysis", *Economy and Society*, vol 29, núm. 1, pp. 111-145.
- Calderón, Cuauhtémoc y Gerardo Martínez, 2005, "La ley de Verdoorn y la industria manufacturera regional en

- México en la era del TLCAN", *Frontera Norte*, vol. 17, núm. 34, pp. 103-137.
- Calderón, Cuauhtémoc, 2008, "Crecimiento y rendimientos crecientes a escala en la industria manufacturera regional Mexicana", en Trinidad Martínez, coord., *Desarrollo regional en México, México*, Universidad Autónoma Metropolitana, Unidad Azcapotzalco, pp. 45-75.
- Calva, José Luis, 2001, "La economía mexicana en recesión", *Problemas del Desarrollo*, vol. 32, núm. 126, pp. 237-252.
- Carrillo, Jorge, 2007, "La industria maquiladora en México: ¿evolución o agotamiento?", *Comercio Exterior*, vol. 57, núm. 8, pp. 668-681.
- Centro de Estudios de las Finanzas Públicas, 2005, "Evolución del sector manufacturero de México, 1980-2003", en http://bit.ly/cvTHAL, consultado el 10 de marzo del 2008.
- Chakravarty, Sangeeta y Mitra Arup, 2009, "Is Industry Still the Engine of Growth? An Econometric Study of the Organized Sector Employment in India", *Journal of Policy Modeling*, vol. 31, núm. 1, pp. 22-35.
- Chamboux-Leroux, Jean, 2001, "Efectos de la apertura comercial en las regiones y la localización industrial en México", *Comercio Exterior*, vol. 51, núm. 7, pp. 600-609.
- Chávez, Marco, 2007, "México: de la macroeconomía de la inestabilidad y el estancamiento hacia la recuperación del desarrollo", en José Luis Calva, coord., *Macroeconomía del crecimiento sostenido*, México, Porrúa, pp. 171-190.
- Clavijo, Fernando y Susana Valdivieso, 1994, "La política industrial de México, 1988-1994", en Fernando Clavijo y José Casar, comps., *La industria mexicana en el mercado mundial. Elementos para una política industrial*, México, Fondo de Cultura Económica, pp. 27-92.
- Coatsworth, John, 1978, "Obstacles to Economic Growth in Nineteenth-century Mexico", *The American Historical Review*, vol. 83, núm. 1, pp. 80-100.

- ---, 1990, Los orígenes del atraso. Nueve ensayos de historia económica de México en los siglos XVIII y XIX, México, Alianza Editorial Mexicana.
- Cordera, Rolando, et al, 2009, México frente a la crisis: hacia un nuevo curso de desarrollo, México, Nuevo curso de desarrollo.
- Cornwall, J., 1976, "Diffusion Convergence and Kaldor's Laws", *Economic Journal*, vol. 86, núm. 342, pp. 307-314.
- Cripps, T. y R. Tarling, 1973, *Growth in Advanced Capitalist Economies 1950-1970*, Londres, Cambridge University Press.
- Cruz, Moritz, 2007, "Romper la tasa de crecimiento neoliberal mexicana: una propuesta harrodiana", *Economía UNAM*, vol. 5, núm. 14, pp. 70-86.
- Dasgupta, Sukti y Ajit Singh, 2005, "Will Services be the New Engine of Indian Economic Growth?", *Development and Change*, vol. 36, núm. 6, pp. 1035-1057.
- Dasgupta, Sukti y Ajit Singh, 2006, "Manufacturing, Services and Premature De-industrialization in Developing Countries: a Kaldorian Empirical Analysis", *Center for Business Research*, Universidad de Cambridge, Documento de trabajo, 327.
- De María y Campos, Mauricio, 1999, *Necesidad de una nueva* política industrial para el México del siglo XXI, México, Centro Lindavista.
- ---, 2008, "Hacia una nueva estrategia de México para el desarrollo de la industria y los servicios de alto valor agregado y de la innovación para competir en la globalización", en http://bit.ly/apXZS9, consultado el 5 de enero del 2010.
- de María y Campos, Mauricio, et al, 2009, El desarrollo de la industria mexicana en su encrucijada, México, Universidad Iberoamericana de la Ciudad de México e Instituto de Investigaciones sobre Desarrollo Sustentable y Equidad Social.

- Díaz-Bautista, Alejandro, 2003, "Mexico's Industrial Engine of Growth: Cointegration and Causality", *Momento Económico*, núm. 126, pp. 34-41.
- Domar, Evsey, 1946, "Capital Expansion, Rate of Growth and Employment", *Econometrica*, vol. 14, núm. 2, pp. 137-47.
- Driver, Ciaran, 1996, "Stagnation as a Problem of Transition: Arguments and Proposals", *Cambridge Journal of Economics*, vol. 20, núm. 5, pp. 553-564.
- Dussel, Enrique, 1997, La economía de la polarización: teoría y evolución del cambio estructural de las manufacturas mexicanas (1988-1996), México, JUS, UNAM.
- Engle, Robert y Clive Granger, 1987, "Co-integration and Error Correction: Representation, Estimation, and Testing", *Econométrica*, vol. 55, núm. 2, pp. 251-276.
- Fajnzylber, Fernando y Trinidad Martínez, 1976, Las empresas transnacionales: expansión a nivel mundial y proyección en la industria mexicana, México, Fondo de Cultura Económica.
- Felipe, Jesus, 1998, "The Role of Manufacturing Sector in Southeast Asian Development: a Test of Kaldor's First Law", *Journal of Post Keynesian Economics*, vol. 20, núm. 3, pp. 463-485.
- Fingleton, Bernard y John McCombie, 1998, "Increasing Returns and Economic Growth: Some Evidence from the European Union Regions", *Oxford Economic Papers*, vol. 50, núm. 1, pp. 89-105.
- French-Davis, Ricardo, 2005, *Crecimiento esquivo y volatili-dad financiera*, Bogotá, CEPAL y Mayol ediciones.
- Fuji, Gerardo, 2000, "El comercio exterior manufacturero y los límites al crecimiento económico de México", *Comercio Exterior*, vol. 50, núm. 11, pp. 1008-1014.
- Fujita, Nanako, 2007, "Myrdal's Theory of Cumulative Causation", *Evolutionary Institutional Economic Review*, vol. 3, núm. 2, pp. 275-283.

- Garrido, Celso, 2002, "Industrialización y grandes empresas en el desarrollo estabilizador, 1958-1970", *Análisis Económico*, vol. 17, núm. 35, pp. 233-267.
- Gomulka, S., 1983, "Industrialization and the rate of growth: Eastern Europe", *Journal of Post Keynesian Economics*, vol. 5, núm. 3, pp. 388-396.
- Guerrero de Lizardi, Carlos, 2003, "Modelo de crecimiento económico restringido por la balanza de pagos. Evidencia para México, 1940-2000", *Trimestre Económico*, vol. 70, núm. 278, pp. 253-274.
- ---, 2006, "Thirlwall's Law With an Emphasis on the Ratio of Export/import Income Elasticities in Latin America Economies During the Twentieth Century", *Estudios económicos*, vol. 21, núm. 1, pp. 23-44.
- Guerrero, Isabel, *et al*, 2006, "La trampa de la desigualdad y su vínculo con el bajo crecimiento en México", en http://bit.ly/9J764e, consultado el 23 de abril del 2008.
- Guillén, Arturo, 2000, *México hacia el siglo XXI. Crisis y modelo económico alternativo*, México, Plaza y Valdés editores y UAM.
- Guillén, Héctor, 1990, El sexenio de crecimiento cero: contra los defensores de las finanzas sanas, México, Era.
- Gujarati, Damodar, 2003, *Basic Econometrics*, Estados Unidos, McGraw Hill.
- Haber, Stephen, 1992, *Industria y subdesarrollo. La industrialización de México, 1890-1940*, México, Alianza editorial.
- Haber, Stephen, et al, 2008, Mexico since 1980, Nueva York, Cambridge University Press.
- Harrod, Roy, 1939, "An Essay on Dynamic Theory", *Economic Journal*, vol. 49, núm. 193, pp. 14-33.
- Hausmann, Ricardo, et al, 2005, "Growth Accelerations", *Journal of Economic Growth*, vol. 10, núm. 4, pp. 303-329.
- Hernández, Enrique, 1985, *La productividad y el desarrollo industrial en México*, México, Fondo de Cultura Económica.

- Hernández, Enrique y Jorge Velázquez, 2003, "Globalización, dualismo y distribución del ingreso en México", *Trimestre Económico*, vol. 70, núm. 279, pp. 535-578.
- Hirschman, Albert, 1958, *La estrategia del desarrollo económico*, México, Fondo de Cultura Económica.
- Huerta, Arturo, 2004, *La economía política del estancamiento*, México, Diana.
- Ibarra, Carlos, 2008, "La paradoja del crecimiento lento de México", *Revista de la CEPAL*, núm. 95, pp. 83-102.
- Ibarra, David, 2008, *El desmantelamiento de PEMEX*, México, UNAM.
- INEGI, 2002, Sistema de clasificación industrial de América del Norte, México 2002, México, INEGI.
- INEGI, 2007, Tablas comparativas entre el SCIAN y otros clasificadores. México, INEGI.
- Johansen, S., 1988, "Statistical Analysis of Cointegration Vectors", *Journal of Economic Dynamic and Control*, vol. 12, pp. 231-254.
- Kaldor, Nicholas, 1966, Causes of the Slow Rate of Economic Growth of the United Kingdom: an Inaugural Lecture, Inglaterra, Cambridge University Press.
- ---, 1968, "Productivity and Growth in Manufacturing Industry: a Reply", *Económica*, vol. 35, núm. 140, pp. 385-391.
- ---, 1970, "The Case for Regional Policies", *Scottish Journal of Political Economy*, vol. 17, núm. 3, pp. 337-348.
- ---, 1972, "The Irrelevance of Equilibrium Economics", *Economic Journal*, vol. 82, núm. 328, pp. 1237-1255.
- ---, 1975, "What is Wrong With Economic Theory", *Quarterly Journal of Economics*, vol. 89, núm. 3, pp. 347-357.
- ---, 1978, Further Essays on Economic Theory, Londres, Duckworth.
- ---, 1985, *Economics Without Equilibrium*, Nueva York, Sharpe.

- Lechuga, Jesús, 2001, "Acumulación y regulación en la economía mexicana (1975-2000)", *Problemas del desarrollo*, vol. 32, núm. 125, pp. 71-108.
- León-Ledesma, Miguel, 2000, "Economic Growth and Verdoorn's Law in the Spanish Regions, 1962-1991", *International Review of Applied Economics*, vol. 14, núm. 1, pp. 55-69.
- Levy, Santiago, 2007, "¿Pueden los programas sociales disminuir la productividad y el crecimiento económico? Una hipótesis para México", *Trimestre Económico*, vol 74, núm. 295, pp. 491-540.
- Lewis, Arthur, 1954, "Economic Development with Unlimited Supplies of Labor", *Manchester School of Economic and Social Studies*, vol. 22, núm. 2, pp. 139-191.
- ---, 1955, *Teoría del desarrollo económico*, México, Fondo de Cultura Económica.
- Loría, Eduardo [conferencia], 2007, "Causes of the Slow Rate of Economic Growth in Mexico", USA, UC San Diego, 1 y 2 de Junio.
- ---, 2007, *Econometría con aplicaciones*, México, Pearson/ Prentice Hall.
- Maddala, G., 2001, Econometría, México, McGraw Hill.
- Mamgain, Vaishali, 1999, "Are the Kaldor-Verdoorn Laws Applicable in the Newly Industrializing Countries?", *Review of Development Economics*, vol. 3, núm. 3, pp. 295-309.
- Marcos, Ernesto, 1988, *Propuesta para una nueva política industrial de México*, México, NAFIN.
- Martínez del Campo, Manuel, 1985, *Industrialización en México. Hacia un análisis crítico*, México, El Colegio de México.
- Martínez, Lorenza, *et al*, 2004, "Globalización, crecimiento y crisis financieras. Lecciones de México y del mundo en desarrollo", *Trimestre Económico*, vol. 71, núm. 282, pp. 251-351.

- McCombie, John, 1981, "What Still Remains of Kaldor's laws", *Economic Journal*, vol. 91, núm. 361, pp. 206-216.
- ---, 1982, "Economic Growth, Kaldor's Laws and the Static-dynamic Verdoorn Law Paradox", *Applied Economics*, vol. 14, núm. 3, pp. 279-294.
- ---, 1983, "Kaldor's Laws in Retrospect", *Journal of Post Keynesian Economics*, vol. 5, núm. 3, pp. 414-429.
- --- y J. de Ridder, 1984, "The Verdoorn Law Controversy: Some new Empirical Evidence Using US State Data", Oxford *Economic Papers*, vol. 36, núm. 2, pp. 268-284.
- ---, 1986, "On Some Interpretations of the Relationship Between Productivity and Output Growth", Applied Economics, vol. 18, núm. 11, pp. 1215-1225.
- ---, 2002, "Increasing Returns and the Verdoorn Law From a Kaldorian Perspective", en John McCombie, *et al*, eds., *Productivity growth and economic performance*, Londres, Macmillan, pp. 64-114.
- --- y Mark Roberts, 2007, "Returns to Scale and Regional Growth: the Static-dynamic Verdoorn Law Paradox Revisited", *Journal of Regional Science*, vol. 47, núm. 2, pp. 179-208.
- Mejía, Pablo, 2002, "¿Hace falta una política industrial en México?", Ciencia Ergo Sum, vol. 9, núm. 3, pp. 231-248.
- Mejía, Pablo, 2003, "Fluctuaciones cíclicas en la producción maquiladora de México", *Frontera Norte*, vol. 15, núm. 29, pp. 65-83.
- Moreno-Brid, Juan Carlos [tesis doctoral], 2001, Essays on Economic Growth and the Balance of Payments Constraint with Special Reference to the Case of Mexico, Inglaterra, Universidad de Cambridge, Facultad de Economía y Política.
- ---, Juan Carlos y Jaime Ros, 2004, "México: las reformas del mercado desde una perspectiva histórica", *Revista de la CEPAL*, núm. 84, pp. 35-57.

- ---, Juan Carlos, *et al*, 2006, "Manufactura y TLCAN: un camino de luces y sombras", *Economía UNAM*, vol. 3, núm. 8, pp. 95-114.
- ---, Juan Carlos y Jaime Ros, 2009, *Development and Growth in the Mexican Economy: a Historical Perspective*, Nueva York, Oxford University Press.
- Myrdal, Gunnar, 1957, *Economic Theory and Under-developed Regions*, Londres, Duckworth.
- Necmi, S., 1999, "Kaldor's Growth Analysis Revisited", *Applied Economics*, vol. 31, núm. 5, pp. 653-660.
- Newell, Robert y Luis Rubio, 1984, *Mexico's Dilemma: the Political Origins of the Economic Crisis*, Londres, Westview Press.
- Nurkse, Ragnar, 1952, "Some International Aspects of the Problem of Economic Development", *American Economic Review*, vol. 42, núm. 2, pp. 571-583.
- Nurkse, Ragnar, 1953, *Problems of Capital Formation in Underdeveloped Countries*, Oxford, Blackwell.
- Ocegueda, Juan, 2000, "La hipótesis de crecimiento restringido por balanza de pagos. Una evaluación de la economía mexicana, 1960-1997", *Investigación Económica*, vol. 60, núm. 232, pp. 91-122.
- ---, 2003, "Análisis Kaldoriano del crecimiento económico de los estados de México, 1980-2000", *Comercio Exterior*, vol 53, núm. 11, pp. 1024-1034.
- ---, Juan, 2005, "Comercio y crecimiento económico en Baja California", *Investigación Económica*, vol. 64, núm. 251, pp. 111-139.
- Ortiz, Antonio, 1998, *El desarrollo estabilizador. Reflexiones sobre una época*, México, Fondo de Cultura Económica.
- Ortiz, Etelberto, 2007, "¿Cuáles políticas para el cambio estructural, ahora son necesarias? Por una institucionalidad eficiente", en José Luis Calva, coord., *Macroeconomía del crecimiento sostenido*, México, editorial Porrúa, pp. 191-213.

- Pacheco-López, Penelope [tesis doctoral], 2003, *Trade Liberalization in Mexico and its Impacts on Exports, Imports and the Balance of Payments*", Inglaterra, Universidad de Kent.
- Parikh, A., 1978, "Differences in Growth Rates and Kaldor's Laws", *Económica*, vol. 45, núm. 177, pp. 83-91.
- Peres, Wilson, 1994, "Políticas de competitividad", *Revista de la CEPAL*, núm. 53, pp. 49-58.
- Perrotini, Ignacio, 2004, "Restricciones estructurales del crecimiento en México, 1980-2003", *Economía UNAM*, vol. 1, núm. 1, pp. 86-100.
- Pons-Novell, Jordi y Elisabet Viladecans-Marsal, 1999, "Kaldor's Laws and Spatial Dependence: Evidence for the European Regions", *Regional Studies*, vol. 33, núm. 5, pp. 443-451.
- Prebisch, Raúl, 1959, "Commercial Policy in the Underdeveloped Countries", *American Economic Review*, vol. 49, núm. 29, pp. 251-273.
- Rima, Ingrid, 2004, "Increasing Returns, New Growth Theory and the Classical", *Journal of Post Keynesian Economics*, vol 27, núm. 1, pp.171-184.
- Rodríguez, Octavio, 2006, *El estructuralismo latinoamerica*no, Santiago, CEPAL y Siglo XXI.
- Rodrik, Dani, 2004, "Industrial Policy for the Twenty-first Century", en http://bit.ly/cCYr1d>, consultado el 23 de marzo 2008.
- Rodrik, Dani, 2005, "Políticas de diversificación económica", *Revista de la CEPAL*, núm. 87, pp. 7-23.
- Rodrik, Dani, 2008, "The Real Exchange Rate and Economic Growth", en http://bit.ly/aryplg, consultado el 14 de abril del 2009.
- Ros, Jaime y José Casar, 1983, "Problemas estructurales de la industrialización en México", *Investigación Económica*, vol. 42, núm. 164, pp. 153-186.
- ---, 1993, "Mexico's Trade and Industrialization Experience Since 1960: a Reconsideration of Past Policies and Assessment

- of Current Reforms", en http://nd.edu/~kellogg/publications/workingpapers/WPS/186.pdf, consultado el 11 de mayo del 2009.
- Ros, Jaime, 2004, *Teoría del desarrollo y economía del crecimiento*, México, Fondo de Cultura Económica.
- ---, 2008, "La desaceleración del crecimiento económico en México desde 1982", *Trimestre Económico*, vol. 75, núm. 299, pp. 537-560.
- Rosales, Osvaldo, 1994, "Política industrial y fomento a la competitividad", *Revista de la CEPAL*, núm. 53, pp. 58-79.
- Rosenstein-Rodan, Paul, 1943, "Problems of Industrialization of Eastern and South-eastern Europe", *Economic Journal*, vol. 59, núm. 210/211, pp. 202-211.
- Rowthorn, R., 1975, "What Remains of Kaldor Law?", *Economic Journal*, vol. 85, núm. 337, pp. 10-19.
- Scitovsky, Tibor, 1954, "Two Concepts of External Economies", *Journal of Political Economy*, vol. 62, núm. 2, pp. 143-151.
- Seiter, Stephan, 2005, "Productivity and Employment in the Information Economy: What Kaldor's and Verdoorn's Growth Laws can Teach the US", *Empirica*, vol. 32, núm. 1, pp. 73-90.
- Smith, Adam, 1984, *Investigación sobre la naturaleza y causa de la riqueza de las naciones*, México, Fondo de Cultura Económica.
- Solís, Leopoldo, 2000, *La realidad económica mexicana: retrovisión y perspectivas*, México, Fondo de Cultura Económica.
- Stavrinos, Vasilios, 1987, "The Intertemporal Stability of Kaldor's First and Second Growth Laws in the UK", *Applied Economics*, vol. 19, núm. 9, pp. 1201-1209.
- Stockhammer, Engelbert, 2004, "Financialisation and the Slowdown of Accumulation", *Cambridge Journal of Economics*, vol. 28, núm. 5, pp. 719-741.

- Suárez Dávila, Alejandro, 2004, "México: concentración y localización del empleo manufacturero. 1980-1998", *Economía Mexicana*, vol. 13, núm. 2, pp. 209- 254.
- ---, 2010, "¿Reforma fiscal en serio?", El Universal, 17 de febrero, México.
- Sunkel, Osvaldo, 1991, El desarrollo desde dentro. Un enfoque neoestructuralista para la América Latina, México, Fondo de Cultura Económica.
- Talavera, Rosa y Judith Mariscal, 1989, "La década de los ochenta: acontecimientos en la economía mundial", en Jesús Lechuga y Fernando Chávez, coords., Estancamiento económico y crisis social en México, 1983-1988, México, UAM-A, pp. 17-45.
- Tello, Carlos, 2007, *Estado y desarrollo: México 1920-2006*, México, UNAM y Facultad de Economía.
- Thirlwall, Anthony, 1983, "A Plain Man's Guide to Kaldor's Growth Laws", *Journal of Post Keynesian Economics*, vol. 5, núm. 3, pp. 345-358.
- ---, 2003, La naturaleza del crecimiento económico. Un marco alternativo para comprender el desempeño de las naciones, México, Fondo de Cultura Económica.
- Toner, Phillip, 1999, *Main Currents in Cumulative Causation:* the Dynamics of Growth and Development, Londres, Macmillan.
- Torres, Eduardo, 2009, "La pérdida de empleos en 2000: ¿Cuántos y dónde?", Observatorio Sectorial de BBVA, julio.
- Vaciago, G., 1975, "Increasing Returns and Growth in Advanced Economies: Re-evaluation", *Oxford Economic Papers*, vol. 27, núm. 2, pp. 232-239.
- Vázquez, Miguel Ángel y María del Carmen Hernández, 2008, "Industrialización sonorense. Itinerario de un proyecto inconcluso", Estudios Sociales. *Revista de Investigación Científica*, vol.16, no. 31, pp. 205-236.
- Velasco, Edur, 1989, "Crisis y reestructuración industrial en México", en Jesús Lechuga y Fernando Chávez, coords.,

- Estancamiento económico y crisis social en México, 1983-1988, México, UAM-A, pp. 17-45.
- Verdoorn, Petrus, 1949, "Fattori che regolano lo sviluppo della produttivita del lavoro", L'Industria, núm. 1, pp. 3-10.
- Villarreal, René, 1988, *México 2010. De la industrialización tardía a la reestructuración industrial*, México, Diana.
- ---, 1997, Industrialización, deuda y desequilibrio externo en México. Un enfoque neoestructuralista (1929-1997), México, Fondo de Cultura Económica.
- ---, 2005, Industrialización, competitividad y desequilibrio externo en México. Un enfoque macroindustrial y financiero (1929-2010), México, Fondo de Cultura Económica.
- Wells, Heather y Anthony Thirlwall, 2003, "Testing Kaldor's Growth Laws Across the Countries of Africa", *African Development Review*, vol. 15, núm. 2-3, pp. 89-105.
- Wolfe, J., 1968, "Productivity and Growth in Manufacturing Industry: Some Reflections on Professor Kaldor's Inaugural Lecture", *Económica*, vol. 35, núm. 138, pp. 117-126.
- Wooldrigdge, J., 2000, *Introducción a la econometría. Un enfoque moderno*, México, Thomson-Learning.
- Young, Allyn, 1928, "Increasing Returns and Economic Progress", *Economic Journal*, vol. 38, núm. 152, pp. 527-542.

ANEXO 1

Datos básicos utilizados en las estimaciones econométricas

• Datos para la estimación de la primera ley de Kaldor

1.1 Producto Interno Bruto total por entidad, 1980-2006 Miles de pesos (1993=100)

Entidad	1980	1988	1994	2000	2006
Aguasca- lientes	5,361,425	9,491,246	12,231,148	17,379,943	22,377,765
Baja Cali- fornia	20,271,402	29,782,334	34,661,341	49,695,749	58,232,629
Baja Califor- nia Sur	3,321,967	4,463,120	6,363,069	7,991,067	10,466,067
Campeche	4,251,703	15,921,146	14,171,371	15,960,205	18,334,904
Coahuila	22,714,862	31,501,194	34,900,322	47,589,416	58,385,293
Colima	8,114,475	7,487,093	6,677,019	8,221,120	9,250,365
Chiapas	18,515,589	21,023,493	21,480,509	25,296,965	28,752,131
Chihuahua	24,075,425	38,293,007	47,869,331	66,662,053	77,922,807
Distrito Federal	229,662,499	266,523,228	284,644,326	327,780,835	343,587,732
Durango	11,054,892	15,035,409	15,697,509	17,936,577	22,540,101
Guanajuato	25,479,954	36,573,377	40,679,335	52,654,119	63,256,582
Guerrero	14,588,672	20,185,566	22,449,339	24,188,080	26,081,422
Hidalgo	27,343,948	21,311,883	17,981,146	20,982,870	22,629,063
Jalisco	57,741,581	74,368,777	78,432,706	94,957,097	105,868,073
México	94,836,620	117,485,997	124,695,330	155,323,294	179,995,950
Michoacán	21,025,375	26,224,516	28,707,113	34,653,284	37,735,095
Morelos	9,536,532	15,348,912	17,576,202	20,252,175	24,227,548
Nayarit	6,847,414	7,661,105	7,774,913	8,263,604	9,471,734
Nuevo León	53,042,768	71,019,875	78,156,160	101,900,374	126,005,891
Oaxaca	12,712,465	18,632,270	19,871,523	21,913,561	24,107,810

Entidad	1980	1988	1994	2000	2006
Puebla	28,921,682	36,669,871	39,212,207	51,878,101	60,242,264
Querétaro	8,341,248	14,685,606	17,543,352	25,379,930	30,710,529
Quintana Roo	3,472,951	8,756,363	15,544,326	19,556,595	25,251,925
San Luis Potosí	12,720,801	19,010,774	21,883,462	25,379,805	31,837,761
Sinaloa	18,635,048	25,191,210	26,943,064	30,463,477	34,679,991
Sonora	42,743,767	36,421,650	32,424,060	41,473,855	49,880,154
Tabasco	20,794,869	16,468,528	15,368,852	17,369,708	19,194,318
Tamaulipas	26,018,191	31,051,338	34,648,523	44,971,338	53,660,149
Tlaxcala	4,082,729	6,054,573	6,128,809	7,982,424	9,037,957
Veracruz	48,982,286	54,447,140	55,649,210	60,856,192	69,875,317
Yucatán	19,953,877	16,884,686	15,945,716	19,850,850	23,905,325
Zacatecas	6,741,589	9,533,661	9,823,746	11,162,431	13,664,077

1.2 Producto Interno Bruto manufacturero por entidad, 1980-2006 Miles de pesos (1993=100)

Entidad	1980	1988	1994	2000	2006
Aguasca- lientes	794,560	2,237,155	3,130,722	5,492,894	7,418,683
Baja Cali- fornia	3,447,380	4,748,971	6,365,091	11,203,714	11,034,046
Baja Califor- nia Sur	268,220	213,226	192,293	340,199	399,164
Campeche	423,700	281,857	223,835	219,879	231,279
Coahuila	6,126,200	8,883,147	10,841,793	17,670,062	21,679,718
Colima	311,340	294,691	305,174	373,804	431,516
Chiapas	2,455,120	1,155,841	1,172,412	1,068,359	897,880
Chihuahua	3,638,440	6,819,297	9,605,299	14,431,648	14,535,020
Distrito Federal	58,028,000	47,504,006	46,485,816	59,047,838	50,444,384
Durango	1,852,500	2,752,461	2,801,025	3,555,625	4,064,934
Guanajuato	4,687,920	6,784,629	7,967,092	14,598,147	17,285,369
Guerrero	792,100	893,549	1,003,778	1,262,696	1,410,022

Entidad	1980	1988	1994	2000	2006
Hidalgo	4,308,340	4,546,493	4,670,299	5,611,505	5,430,732
Jalisco	13,120,600	16,049,966	16,693,275	21,097,728	20,287,610
México	35,604,940	38,526,580	38,882,841	50,837,085	52,666,016
Michoacán	2,534,600	2,847,886	3,373,378	4,705,161	4,237,153
Morelos	2,073,220	3,246,282	3,476,875	4,308,253	4,392,837
Nayarit	1,237,900	893,195	713,903	718,594	570,478
Nuevo León	17,941,900	19,156,565	19,833,180	28,919,494	32,306,034
Oaxaca	1,870,560	2,117,221	2,475,052	2,894,088	3,437,701
Puebla	7,447,080	7,927,866	8,934,113	14,436,328	17,355,322
Querétaro	2,779,720	4,492,704	4,908,800	8,734,692	9,671,085
Quintana Roo	109,800	371,969	441,852	530,908	681,334
San Luis Potosí	2,703,940	4,479,736	5,186,609	6,791,303	7,703,225
Sinaloa	2,036,040	1,855,149	1,935,762	2,208,794	2,516,991
Sonora	2,522,900	4,130,918	5,599,628	7,685,322	9,021,615
Tabasco	1,071,100	936,159	936,859	949,366	894,132
Tamaulipas	3,554,040	4,677,604	6,412,672	10,364,193	11,520,645
Tlaxcala	939,240	1,617,540	1,619,252	2,370,415	2,427,270
Veracruz	10,383,800	9,443,783	10,224,015	11,175,832	11,186,963
Yucatán	1,656,140	1,736,724	2,001,105	2,874,777	3,252,997
Zacatecas	281,280	409,651	477,843	612,921	634,443

1.3 Producto Interno Bruto no manufacturero por entidad, 1980-2006 Miles de pesos (1993=100)

Entidad	1980	1988	1994	2000	2006
Aguasca- lientes	4,566,865	7,254,091	9,100,426	11,887,049	14,959,082
Baja Cali- fornia	16,824,022	25,033,363	28,296,250	38,492,035	47,198,583
Baja Califor- nia Sur	3,053,747	4,249,894	6,170,776	7,650,868	10,066,903
Campeche	3,828,003	15,639,289	13,947,536	15,740,326	18,103,625
Coahuila	16,588,662	22,618,047	24,058,529	29,919,354	36,705,575
					Continúa

Entidad	1980	1988	1994	2000	2006
Colima	7,803,135	7,192,402	6,371,845	7,847,316	8,818,849
Chiapas	16,060,469	19,867,652	20,308,097	24,228,606	27,854,251
Chihuahua	20,436,985	31,473,710	38,264,032	52,230,405	63,387,787
Distrito Federal	171,634,499	219,019,222	238,158,510	268,732,997	293,143,348
Durango	9,202,392	12,282,948	12,896,484	14,380,952	18,475,167
Guanajuato	20,792,034	29,788,748	32,712,243	38,055,972	45,971,213
Guerrero	13,796,572	19,292,017	21,445,561	22,925,384	24,671,400
Hidalgo	23,035,608	16,765,390	13,310,847	15,371,365	17,198,331
Jalisco	44,620,981	58,318,811	61,739,431	73,859,369	85,580,463
México	59,231,680	78,959,417	85,812,489	104,486,209	127,329,934
Michoacán	18,490,775	23,376,630	25,333,735	29,948,123	33,497,942
Morelos	7,463,312	12,102,630	14,099,327	15,943,922	19,834,711
Nayarit	5,609,514	6,767,910	7,061,010	7,545,010	8,901,256
Nuevo León	35,100,868	51,863,310	58,322,980	72,980,880	93,699,857
Oaxaca	10,841,905	16,515,049	17,396,471	19,019,473	20,670,109
Puebla	21,474,602	28,742,005	30,278,094	37,441,773	42,886,942
Querétaro	5,561,528	10,192,902	12,634,552	16,645,238	21,039,444
Quintana Roo	3,363,151	8,384,394	15,102,474	19,025,687	24,570,591
San Luis Potosí	10,016,861	14,531,038	16,696,853	18,588,502	24,134,536
Sinaloa	16,599,008	23,336,061	25,007,302	28,254,683	32,163,000
Sonora	40,220,867	32,290,732	26,824,432	33,788,533	40,858,539
Tabasco	19,723,769	15,532,369	14,431,993	16,420,342	18,300,186
Tamaulipas	22,464,151	26,373,734	28,235,851	34,607,145	42,139,504
Tlaxcala	3,143,489	4,437,033	4,509,557	5,612,009	6,610,687
Veracruz	38,598,486	45,003,357	45,425,195	49,680,360	58,688,354
Yucatán	18,297,737	15,147,962	13,944,611	16,976,073	20,652,328
Zacatecas	6,460,309	9,124,010	9,345,903	10,549,510	13,029,634

1.4 Producto Interno Bruto agropecuario por entidad, 1980-2006 Miles de pesos (1993=100)

Entidad	1980	1988	1994	2000	2006
Aguasca- lientes	719,095	596,715	618,287	717,157	1,014,900
Baja Cali- fornia	1,819,705	1,649,054	1,140,346	1,445,266	1,350,573
Baja Califor- nia Sur	463,158	533,993	527,062	595,635	803,343
Campeche	1,120,316	776,032	688,917	796,631	721,549
Coahuila	1,466,674	2,213,909	1,613,452	1,833,799	2,153,066
Colima	694,947	712,010	546,754	707,942	714,069
Chiapas	3,778,695	4,288,781	3,098,123	3,938,225	4,301,913
Chihuahua	3,065,011	3,668,849	3,415,358	3,749,507	5,007,410
Distrito Federal	555,979	417,919	373,480	380,485	409,828
Durango	2,455,726	2,878,783	2,677,008	2,744,614	3,685,072
Guanajuato	3,252,126	3,515,944	3,648,249	3,379,932	3,589,035
Guerrero	2,146,463	2,300,778	2,047,448	2,527,548	2,734,965
Hidalgo	1,804,779	1,585,797	1,610,284	1,784,228	2,264,523
Jalisco	7,177,979	6,382,292	6,111,931	6,805,813	8,290,904
México	4,701,747	3,348,028	3,027,900	4,544,343	4,907,041
Michoacán	4,465,684	4,211,143	4,736,887	5,699,620	6,235,025
Morelos	1,099,053	1,379,803	2,027,353	1,996,976	2,845,064
Nayarit	1,675,979	1,381,254	1,483,413	1,637,403	1,636,664
Nuevo León	1,222,758	1,276,833	1,288,220	1,277,185	1,518,232
Oaxaca	2,974,547	3,369,616	2,924,345	3,462,665	3,479,445
Puebla	3,599,916	3,486,758	2,831,395	3,223,854	3,597,627
Querétaro	969,495	835,017	782,779	797,185	950,414
Quintana Roo	248,758	270,137	246,632	193,919	300,334
San Luis Potosí	1,490,400	1,821,546	2,400,787	2,092,352	2,619,283
Sinaloa	4,143,537	5,211,097	5,261,251	6,609,262	7,293,113
Sonora	3,798,484	4,771,466	4,483,344	4,064,356	5,404,097
					Continúa

Entidad	1980	1988	1994	2000	2006
Tabasco	1,357,916	1,371,288	1,207,022	1,184,168	1,260,347
Tamaulipas	3,326,589	3,017,973	3,077,194	2,278,543	2,678,676
Tlaxcala	627,874	552,893	496,613	524,325	616,407
Veracruz	6,458,821	6,341,425	5,081,927	6,090,120	6,217,034
Yucatán	857,768	1,144,750	1,141,671	1,153,636	1,276,241
Zacatecas	1,645,516	2,253,988	2,218,472	2,697,989	3,488,663

1.5 Producto Interno Bruto de servicios por entidad, 1980-2006 Miles de pesos (1993=100)

Entidad	1980	1988	1994	2000	2006
Aguasca- lientes	1,581,931	3,076,054	3,925,207	4,920,377	6,685,670
Baja Cali- fornia	7,067,431	11,441,644	13,191,410	15,663,424	20,234,180
Baja Califor- nia Sur	1,069,731	1,424,238	3,038,132	3,834,554	5,126,521
Campeche	1,234,753	2,228,686	3,206,756	3,622,480	4,476,283
Coahuila	6,006,753	8,357,080	9,865,939	11,151,827	13,056,251
Colima	5,348,817	3,259,699	2,210,237	2,376,577	2,714,042
Chiapas	3,544,406	7,058,045	9,284,494	10,639,666	12,264,235
Chihuahua	7,407,967	12,140,735	14,497,283	16,501,383	18,496,229
Distrito Federal	89,887,608	121,786,531	143,937,555	163,447,188	187,197,827
Durango	3,190,892	4,540,736	5,339,616	5,835,098	7,450,066
Guanajuato	7,495,936	11,791,093	13,513,299	15,454,982	17,838,060
Guerrero	4,638,183	6,976,769	8,288,200	9,254,247	10,007,511
Hidalgo	17,323,911	9,260,915	5,820,366	6,912,672	8,145,528
Jalisco	15,326,144	23,143,528	26,442,097	27,663,817	31,214,126
México	20,765,750	32,705,947	38,305,130	44,955,260	54,726,645
Michoacán	6,763,731	9,481,550	10,990,962	12,608,777	13,816,418
Morelos	2,907,894	4,948,269	6,016,581	6,979,838	7,924,068
Nayarit	1,944,464	2,608,467	2,966,215	3,377,277	3,652,555
Nuevo León	15,588,992	26,070,055	30,506,224	35,112,027	44,192,711
Oaxaca	4,512,597	6,903,005	8,071,430	8,633,753	9,779,499

Entidad	1980	1988	1994	2000	2006
Puebla	8,636,864	12,208,981	14,516,079	16,862,074	19,496,713
Querétaro	2,144,167	3,882,733	5,338,798	6,491,375	7,862,702
Quintana Roo	952,478	2,701,117	4,484,609	6,125,596	9,220,500
San Luis Potosí	4,008,411	5,843,976	6,768,718	7,640,594	8,910,230
Sinaloa	5,438,769	8,295,554	10,308,280	10,738,289	12,412,865
Sonora	27,954,564	16,352,490	11,020,341	12,908,400	13,705,079
Tabasco	2,552,964	4,547,214	5,461,713	6,810,006	8,009,379
Tamaulipas	7,842,200	9,520,554	10,728,144	12,373,047	14,480,640
Tlaxcala	1,328,989	1,869,694	2,265,216	2,832,944	3,139,117
Veracruz	13,463,122	16,925,883	19,424,477	20,839,645	22,659,080
Yucatán	13,284,242	8,158,719	6,715,691	7,473,991	8,842,102
Zacatecas	2,387,869	3,387,506	3,939,551	4,224,346	4,381,600

1.6 Producto Interno Bruto per cápita por entidad, 1980-2006 Pesos (1993=100)

Entidad	1980	1988	1994	2000	2006
Aguasca- lientes	9,824	13,412	14,606	17,960	20,568
Baja Cali- fornia	19,085	18,720	17,771	20,795	20,026
Baja Califor- nia Sur	15,726	14,776	17,520	18,272	19,990
Campeche	10,361	29,803	22,609	22,552	23,867
Coahuila	14,704	16,623	16,276	20,308	22,940
Colima	23,020	17,248	14,040	15,587	16,016
Chiapas	7,548	6,637	5,944	6,296	6,591
Chihuahua	12,653	16,305	17,366	21,854	23,668
Distrito Federal	28,035	31,187	33,449	37,689	38,945
Durango	9,217	11,206	11,113	12,177	14,720
Guanajuato	7,387	9,083	9,211	11,066	12,732
Guerrero	5,939	7,285	7,586	7,734	8,273

Entidad	1980	1988	1994	2000	2006
Hidalgo	16,915	11,222	8,501	9,195	9,497
Jalisco	13,080	13,947	13,330	14,789	15,470
México	13,064	11,761	11,018	12,065	12,651
Michoacán	6,625	7,298	7,356	8,573	9,425
Morelos	9,242	11,976	12,649	13,139	14,821
Nayarit	9,316	9,178	8,727	8,819	9,852
Nuevo León	21,371	23,102	22,489	26,156	29,441
Oaxaca	4,888	6,138	5,946	6,235	6,785
Puebla	8,273	8,726	8,518	10,228	10,993
Querétaro	10,458	13,901	14,254	17,661	18,855
Quintana Roo	11,011	16,551	23,686	21,611	21,482
San Luis Potosí	7,592	9,734	9,979	10,818	13,002
Sinaloa	9,655	10,935	11,050	11,789	13,146
Sonora	29,986	20,435	15,839	18,326	20,453
Tabasco	17,257	10,775	8,767	8,994	9,513
Tamaulipas	14,216	14,035	13,750	16,008	17,443
Tlaxcala	6,890	8,063	7,036	8,088	8,299
Veracruz	9,344	8,697	8,301	8,660	9,676
Yucatán	17,524	12,244	10,472	11,710	12,919
Zacatecas	5,610	7,356	7,312	8,108	9,878

1.7 Producto Interno Bruto total, industrial y manufacturero de México, 1980-2009 Miles de pesos (1993=100)

Periodo	PIB total	PIB industrial	PIB manufacturero
1980/01	862,660,371	235,369,344	162,833,707
1980/02	860,201,261	237,546,738	166,950,094
1980/03	850,807,260	240,329,121	167,237,696
1980/04	915,490,041	248,803,720	173,172,651
1981/01	933,803,093	253,151,043	172,844,711
1981/02	948,182,994	262,200,633	179,086,917
1981/03	923,284,242	267,090,048	181,344,200

Periodo	PIB total	PIB industrial	PIB manufacturero
1981/04	981,360,569	264,828,303	181,274,309
1982/01	962,230,371	262,928,771	179,549,321
1982/02	953,281,169	261,980,051	178,783,256
1982/03	916,543,737	253,872,464	169,851,279
1982/04	934,854,544	241,140,777	166,252,003
1983/01	923,492,835	229,841,955	159,512,608
1983/02	907,078,637	231,447,820	162,234,983
1983/03	878,795,045	228,427,738	157,190,825
1983/04	926,212,938	229,274,721	157,024,556
1984/01	953,719,859	234,333,370	162,714,667
1984/02	933,673,908	239,405,218	167,581,820
1984/03	919,963,437	245,648,620	169,727,388
1984/04	952,225,108	245,153,478	168,207,583
1985/01	969,957,650	252,122,756	175,031,777
1985/02	967,781,447	255,512,419	180,152,916
1985/03	930,791,147	257,368,540	180,506,448
1985/04	973,300,194	252,445,117	176,153,618
1986/01	940,724,975	243,828,077	172,023,404
1986/02	963,573,596	249,689,025	176,233,700
1986/03	886,661,757	233,632,170	163,218,390
1986/04	932,581,864	230,209,059	160,796,097
1987/01	931,166,382	233,513,745	164,389,111
1987/02	965,581,358	248,386,308	174,071,638
1987/03	912,230,238	250,533,258	174,740,261
1987/04	978,699,969	251,887,059	176,260,194
1988/01	955,083,192	247,831,737	173,783,870
1988/02	975,997,095	253,712,384	178,473,592
1988/03	913,362,869	250,207,193	175,812,961
1988/04	991,840,583	259,869,269	185,593,872
1989/01	982,796,858	259,287,045	185,508,006
1989/02	1,022,173,915	276,187,133	199,597,049
1989/03	966,359,205	270,646,161	193,976,551
1989/04	1,022,452,750	267,564,678	190,921,966
1990/01	1,025,451,719	278,746,615	199,644,123
1990/02	1,063,513,646	286,611,586	205,268,496

Periodo	PIB total	PIB industrial	PIB manufacturero
1990/03	1,014,122,755	290,380,718	209,328,990
1990/04	1,097,403,550	290,010,489	207,856,407
1991/01	1,064,418,271	285,745,474	204,635,847
1991/02	1,123,469,998	299,860,855	215,566,287
1991/03	1,048,396,369	295,466,020	213,348,887
1991/04	1,141,247,459	303,189,611	216,761,091
1992/01	1,114,349,799	303,995,669	219,395,085
1992/02	1,149,376,170	307,740,018	221,575,316
1992/03	1,095,453,204	313,446,691	223,947,690
1992/04	1,173,365,819	310,868,354	220,791,602
1993/01	1,148,262,583	307,461,547	219,983,273
1993/02	1,158,953,832	309,466,998	221,356,853
1993/03	1,114,105,413	306,932,917	215,687,594
1993/04	1,199,206,926	315,726,828	222,708,453
1994/01	1,175,075,352	311,673,459	220,115,535
1994/02	1,224,362,143	330,654,122	233,181,549
1994/03	1,165,464,145	326,510,393	229,090,342
1994/04	1,261,795,774	330,402,128	233,179,151
1995/01	1,169,873,442	307,039,903	223,889,449
1995/02	1,111,785,002	291,696,099	211,269,680
1995/03	1,071,816,323	291,461,741	211,592,666
1995/04	1,172,883,991	307,309,724	223,575,018
1996/01	1,170,629,352	317,010,575	234,985,178
1996/02	1,183,799,944	324,428,934	238,174,824
1996/03	1,148,180,991	331,768,410	240,081,572
1996/04	1,256,342,084	345,394,271	251,366,149
1997/01	1,224,440,456	335,707,553	248,384,578
1997/02	1,283,060,307	362,731,933	268,497,943
1997/03	1,234,131,769	366,080,902	266,575,850
1997/04	1,340,087,631	376,073,591	276,995,315
1998/01	1,316,480,543	371,258,241	277,455,226
1998/02	1,338,329,244	381,885,166	285,566,021
1998/03	1,299,073,202	390,000,417	286,984,213
1998/04	1,376,299,514	388,487,053	288,565,393
1999/01	1,344,953,829	381,453,006	282,241,165
			Continúa

Periodo	PIB total	PIB industrial	PIB manufacturero
1999/02	1,385,042,573	402,234,663	299,610,244
1999/03	1,356,733,229	410,581,072	302,350,947
1999/04	1,450,246,602	409,122,641	302,322,741
2000/01	1,444,770,464	413,287,828	309,368,987
2000/02	1,486,878,973	429,201,818	321,002,226
2000/03	1,452,346,056	436,592,026	323,620,091
2000/04	1,518,540,666	422,124,431	314,375,180
2001/01	1,472,518,186	407,336,895	304,883,737
2001/02	1,489,086,570	413,640,267	309,921,611
2001/03	1,433,266,465	415,589,768	305,528,849
2001/04	1,497,742,629	405,494,928	299,627,759
2002/01	1,438,841,509	389,229,929	288,588,346
2002/02	1,517,485,546	424,232,724	316,365,833
2002/03	1,457,525,837	418,258,740	306,102,673
2002/04	1,527,612,155	408,842,679	300,958,839
2003/01	1,472,619,587	399,294,311	294,059,603
2003/02	1,516,234,961	413,535,417	304,363,089
2003/03	1,472,867,908	412,734,233	297,864,984
2003/04	1,559,790,759	412,067,192	300,339,836
2004/01	1,526,211,614	413,984,676	303,147,103
2004/02	1,572,793,922	429,632,076	315,527,796
2004/03	1,538,532,351	433,450,520	312,799,549
2004/04	1,635,404,432	429,031,001	312,580,382
2005/01	1,563,089,293	413,163,748	301,587,261
2005/02	1,622,668,761	443,857,032	324,790,050
2005/03	1,586,843,227	437,334,760	314,265,592
2005/04	1,676,109,502	441,408,556	320,613,393
2006/01	1,650,619,412	443,220,592	323,024,297
2006/02	1,703,236,102	461,885,749	336,905,400
2006/03	1,657,458,799	460,569,801	329,455,614
2006/04	1,747,514,031	457,108,585	330,721,059
2007/01	1,695,884,017	447,032,709	323,658,749
2007/02	1,752,300,814	466,846,891	339,715,138
2007/03	1,719,339,625	468,152,832	334,546,621
2007/04	1,813,688,379	465,519,323	335,703,756

Periodo	PIB total	PIB industrial	PIB manufacturero
2008/01	2,135,775,300	770,739,714	388,566,025
2008/02	2,275,661,424	852,550,050	419,585,407
2008/03	2,287,847,347	849,286,723	417,535,336
2008/04	2,236,255,352	752,955,795	411,404,854
2009/01	1,985,508,855	665,441,234	355,932,694

Fuente: Banco de Información Económica del INEGI, PIB trimestral.

• Datos para la estimación de la ley Verdoorn-Kaldor

1.8 Variables censales utilizadas, 1980*

Entidad	UE (número)	PO (número)	K (miles de pesos de 1993)	VA (millones de pesos de 1993)	PRO (pesos)	IFT (pesos)
Aguasca- lientes						
I	514	4,096	19,352	102.85	25,109	11,612,633
II	195	8,110	28,985	154.05	18,995	17,394,045
III	124	613	1,263	6.22	10,154	757,905
IV	33	258	282	5.77	22,372	169,370
V	14	145	1,230	2.98	20,524	738,270
VI	127	648	1,665	4.38	6,752	999,054
VII	3	12	5	0.06	4,791	3,206
VIII	265	3,240	14,819	47.81	14,757	8,892,894
IX	0	0	0	0.00	0	0
Baja Cali- fornia						
I	758	12,119	102,307	503.70	41,563	61,388,977
II	186	4,193	12,623	68.43	16,320	7,575,394
III	278	3,275	5,644	75.57	23,074	3,387,530
IV	132	1,322	14,214	33.77	25,546	8,528,943
V	50	1,408	11,432	64.77	46,003	6,859,597
VI	186	2,259	28,331	179.06	79,263	16,999,710
VII	3	185	1,551	7.87	42,520	930,762
VIII	412	18,040	32,942	328.66	18,218	19,772,397

Entidad	UE (número)	PO (número)	K (miles de pesos de 1993)	VA (millones de pesos de 1993)	PRO (pesos)	IFT (pesos)
IX	23	630	1,001	8.17	12,975	600,970
Baja California Sur						
I	96	1,990	12,642	40.01	20,106	7,585,877
II	16	445	256	11.28	25,355	153,679
III	35	90	69	1.22	13,511	41,172
IV	19	145	459	2.71	18,719	275,287
V	5	45	39	0.39	8,632	23,227
VI	31	120	112	2.50	20,813	67,435
VII	0	0	0	0.00	0	0
VIII	68	255	569	3.38	13,236	341,517
IX	0	0	0	0.00	0	0
Campe- che						
I	342	3,147	6,522	58.16	18,480	3,914,727
II	68	144	6	1.10	7,633	3,819
III	70	666	1,274	8.81	13,225	764,809
IV	9	97	357	1.58	16,301	214,124
V	3	11	0	0.62	56,459	244
VI	11	334	804	5.36	16,043	482,404
VII	0	0	0	0.00	0	0
VIII	70	576	1,724	7.60	13,195	1,034,400
IX	0	0	0	0.00	0	0
Coahuila						
I	728	7,693	18,956	211.20	27,454	11,376,698
II	219	6,797	13,811	138.66	20,400	8,289,118
III	277	853	1,246	12.22	14,330	748,237
IV	113	961	925	17.30	18,003	555,484
V	40	3,125	41,952	82.68	26,458	25,172,170
VI	149	3,647	52,195	105.19	28,843	31,318,491
VII	20	13,481	91,195	913.40	67,755	54,722,243
VIII	581	23,479	416,609	838.04	35,693	249,974,620
IX	32	427	1,780	9.42	22,068	1,068,353

Entidad	UE (número)	PO (número)	K (miles de pesos de 1993)	VA (millones de pesos de 1993)	PRO (pesos)	IFT (pesos)
Colima						
I	264	2,485	17,917	51.20	20,602	10,751,408
II	61	87	92	0.56	6,403	54,937
III	103	323	2,468	3.22	9,956	1,480,715
IV	22	124	105	1.72	13,872	62,794
V	24	631	11,283	18.66	29,579	6,770,291
VI	37	131	427	1.06	8,062	256,474
VII	0	0	0	0.00	0	0
VIII	84	296	580	2.86	9,662	348,016
IX	10	14	16	0.05	0	9,689
Chiapas						
I	948	5,300	54,738	148.37	27,995	32,844,635
II	234	694	1,547	11.35	16,354	928,405
III	419	2,515	10,388	27.39	10,890	6,233,952
IV	63	297	1,478	4.48	15,077	887,030
V	21	1,642	494,403	1,219.00	742,387	296,642,274
VI	94	551	2,223	4.66	8,460	1,334,188
VII	0	0	0	0.00	0	0
VIII	204	551	1,046	5.31	9,628	627,829
IX	6	7	7	0.00	343	4,405
Chihuahua						
I	1,108	7,709	25,796	184.40	23,920	15,480,408
II	246	8,901	11,309	135.24	15,194	6,789,125
III	435	7,655	31,059	219.24	28,640	18,638,756
IV	142	2,625	52,457	120.32	45,837	31,475,264
V	38	1,519	21,369	41.91	27,590	12,822,161
VI	204	2,314	26,719	70.47	30,453	16,032,069
VII	12	1,497	2,564	38.13	25,468	1,538,807
VIII	650	30,908	67,182	490.89	15,882	40,321,273
IX	23	202	96	3.50	17,308	57,464
Distrito Federal						
I	7,617	90,596	252,434	3,568.52	39,389	151,496,809

Entidad	UE (número)	PO (número)	K (miles de pesos de 1993)	VA (millones de pesos de 1993)	PRO (pesos)	IFT (pesos)
II	5,157	103,758	207,120	2,827.70	27,253	124,313,796
III	3,176	24,508	41,269	538.90	21,989	24,771,121
IV	3,133	57,244	199,175	2,096.14	36,618	119,527,624
V	1,634	93,589	428,797	4,403.23	47,049	257,315,878
VI	585	20,097	166,268	826.97	41,149	99,768,553
VII	105	9,503	24,022	227.07	23,894	14,417,184
VIII	6,138	180,576	590,299	6,038.27	33,439	354,251,335
IX	793	15,675	28,226	416.70	26,584	16,941,851
Durango						
I	674	6,647	34,214	273.86	41,201	20,531,182
II	133	2,343	8,306	48.69	20,782	4,984,749
III	188	8,140	63,282	198.17	24,345	37,972,360
IV	52	1,020	58,459	53.21	52,169	35,075,887
V	22	1,149	7,385	57.18	49,763	4,431,733
VI	93	888	5,174	14.40	16,218	3,104,784
VII	5	602	11,656	85.75	142,441	6,994,048
VIII	289	3,298	18,008	79.29	24,042	10,805,914
IX	10	45	171	0.66	14,744	102,779
Gua- najuato						
I	1,970	13,126	30,605	259.31	19,755	18,368,036
II	1,781	29,550	58,699	464.75	15,727	35,231,516
III	437	1,152	622	9.08	7,881	373,648
IV	186	1,994	4,309	27.86	13,973	2,586,461
V	97	9,310	324,289	-658.27	0	194,577,194
VI	572	3,185	24,853	48.43	15,207	14,913,254
VII	6	136	238	1.57	11,558	142,751
VIII	1,054	9,076	55,462	222.55	24,521	33,280,798
IX	34	326	1,195	4.09	12,535	716,894
Guerrero						
I	1,809	7,342	19,531	141.70	19,300	11,721,414
II	350	1,791	4,409	21.45	11,975	2,646,243
III	307	1,210	707	15.45	12,766	424,412

Entidad	UE (número)	PO (número)	K (miles de pesos de 1993)	VA (millones de pesos de 1993)	PRO (pesos)	IFT (pesos)
IV	74	294	1,297	6.07	20,649	778,506
V	29	256	753	6.67	26,064	451,801
VI	70	573	11,992	17.73	30,940	7,195,236
VII	6	11	0	0.06	5,360	4
VIII	236	552	367	4.35	7,877	220,708
IX	118	335	73	3.64	10,862	44,231
Hidalgo						
I	1,074	5,549	10,890	112.88	20,343	6,536,085
II	238	6,334	41,147	145.38	22,953	24,690,622
III	199	811	1,186	11.08	13,660	711,886
IV	48	239	228	2.03	8,475	137,110
V	25	3,087	95,741	-276.06	0	57,445,885
VI	131	3,046	64,853	216.43	71,054	38,913,095
VII	3	606	592	29.16	48,116	355,183
VIII	372	20,723	96,460	1,003.68	48,433	57,884,230
IX	12	649	229	7.23	11,136	137,914
Jalisco						
I	3,485	38,143	273,004	1,577.88	41,368	163,817,512
II	1,409	38,186	181,017	860.01	22,522	108,625,210
III	1,061	7,252	20,956	121.96	16,817	12,576,516
IV	420	4,767	17,860	213.17	44,718	10,717,987
V	377	17,953	154,565	842.20	46,911	92,746,357
VI	651	7,297	57,620	227.18	31,134	34,574,999
VII	8	2,238	49,542	154.49	69,030	29,726,097
VIII	1,983	32,706	130,588	1,004.24	30,705	78,365,846
IX	126	1,659	2,419	31.28	18,855	1,451,958
México						
I	4,768	34,485	192,657	2,075.07	60,173	115,608,253
II	1,668	52,646	355,671	1,645.56	31,257	213,423,579
III	780	8,872	25,668	249.64	28,138	15,404,123
IV	320	20,316	177,087	1,148.72	56,543	106,260,249
V	739	53,361	492,748	3,232.14	60,571	295,670,089
VI	737	19,290	358,488	995.53	51,609	215,100,345

Entidad	UE (número)	PO (número)	K (miles de pesos de 1993)	VA (millones de pesos de 1993)	PRO (pesos)	IFT (pesos)
VII	110	19,067	138,424	1,183.40	49,045	83,062,010
VIII	2,235	138,397	638,365	6,787.74	40,083	383,074,515
IX	132	8,525	59,629	341.71	40,083	35,780,767
Mi- choacán						
I	2,641	13,511	36,254	262.76	19,448	21,758,012
II	584	2,945	5,476	31.10	10,559	3,286,958
III	880	3,431	15,139	35.22	10,264	9,085,047
IV	111	1,372	9,025	57.98	42,257	5,415,491
V	65	3,621	62,871	197.31	54,491	37,724,055
VI	245	1,047	1,096	11.31	10,802	657,879
VII	3	1,958	14,390	525.32	268,292	8,634,599
VIII	757	2,104	3,748	25.97	12,341	2,249,491
IX	134	503	352	5.07	10,080	211,325
Morelos						
I	1,011	4,463	10,489	90.89	20,365	6,295,235
II	159	3,312	32,424	132.20	39,915	19,455,503
III	131	343	306	4.73	13,803	183,810
IV	63	559	453	14.46	25,864	272,091
V	47	4,052	68,155	271.50	67,005	40,894,842
VI	141	2,207	9,254	43.96	19,920	5,553,160
VII	0	0	0	0.00	0	0
VIII	289	6,307	55,526	378.19	59,963	33,318,185
IX	9	172	342	1.53	8,897	205,350
Nayarit						
I	742	7,812	18,051	384.85	49,264	10,833,650
II	122	278	137	2.02	7,268	82,544
III	182	372	164	2.45	6,589	98,828
IV	38	121	173	1.11	9,152	104,090
V	8	84	53	1.48	17,658	31,566
VI	69	249	963	2.89	11,587	577,688
VII	0	0	0	0.00	0	0
VIII	198	768	502	7.36	9,586	301,706

Entidad	UE (número)	PO (número)	K (miles de pesos de 1993)	VA (millones de pesos de 1993)	PRO (pesos)	IFT (pesos)
IX	6	15	0	0.01	943	6
Nuevo León						
I	1,270	24,245	120,527	839.33	34,619	72,326,073
II	427	12,426	62,333	244.42	19,670	37,404,649
III	586	4,120	9,190	77.59	18,834	5,515,350
IV	423	8,823	93,744	448.70	50,856	56,250,185
V	292	20,997	175,824	931.27	44,353	105,502,862
VI	472	25,638	195,966	1,039.17	40,532	117,590,140
VII	46	31,984	308,301	2,237.89	69,969	184,993,668
VIII	1,915	63,152	398,342	2,424.07	38,385	239,030,232
IX	132	2,184	9,250	56.82	26,015	5,550,750
Oaxaca						
I	2,274	7,188	35,264	112.88	15,703	21,161,407
II	547	1,202	483	7.24	6,026	290,035
III	349	1,795	3,844	32.45	18,078	2,307,311
IV	47	2,982	824,898	-485.71	0	494,940,074
V	36	577	6,462	15.47	26,818	3,877,605
VI	146	1,162	3,827	46.96	40,417	2,296,653
VII	0	0	0	0.00	0	0
VIII	297	887	5,035	14.06	15,853	3,021,310
IX	10	21	0	0.18	8,772	88
Puebla						
I	4,092	19,724	95,337	440.95	22,356	57,210,364
II	1,205	25,178	145,787	555.29	22,054	87,482,203
III	892	2,202	1,641	17.03	7,736	985,190
IV	175	1,406	11,737	43.52	30,955	7,042,869
V	184	4,799	56,747	468.13	97,548	34,050,112
VI	1,856	6,040	9,962	74.32	12,304	5,979,421
VII	17	5,765	119,578	406.56	70,521	71,749,015
VIII	968	21,574	770,414	1,158.15	53,683	462,256,896
IX	118	281	202	1.24	4,408	121,120

Entidad	UE (número)	PO (número)	K (miles de pesos de 1993)	VA (millones de pesos de 1993)	PRO (pesos)	IFT (pesos)
Queré- taro						
I	487	8,783	71,957	351.16	39,981	43,177,877
II	121	4,854	11,158	89.08	18,353	6,696,751
III	71	964	1,785	19.34	20,060	1,071,369
IV	38	1,143	9,594	32.86	28,747	5,756,975
V	17	4,536	244,189	194.07	42,784	146,515,228
VI	177	661	558	6.76	10,220	334,797
VII	8	875	24,861	22.91	26,179	14,917,212
VIII	227	9,613	48,125	524.04	54,513	28,878,551
IX	4	350	3,765	4.63	13,242	2,259,274
Quintana Roo						
I	177	1,228	2,841	14.77	12,026	1,705,326
II	73	113	27	0.92	8,124	16,132
III	70	297	371	4.34	14,615	223,007
IV	11	90	903	1.54	17,146	541,690
V	0	0	0	0.00	0	0
VI	11	137	85	2.36	17,257	51,195
VII	0	0	0	0.00	0	0
VIII	20	62	15	0.78	12,523	8,908
IX	0	0	0	0.00	0	0
San Luis Potosí						
I	1,208	9,613	53,635	308.53	32,095	32,184,899
II	245	4,680	15,974	75.71	16,177	9,586,465
III	282	2,135	1,609	45.20	21,173	966,196
IV	78	1,503	6,288	49.33	32,821	3,773,294
V	55	2,322	23,462	92.21	39,709	14,078,339
VI	272	2,492	115,515	162.39	65,164	69,309,781
VII	16	1,800	18,268	167.53	93,072	10,961,377
VIII	426	5,946	42,547	165.00	27,751	25,530,560
IX	15	179	45	1.78	9,928	27,282
Sinaloa						

Entidad	UE (número)	PO (número)	K (miles de pesos de 1993)	VA (millones de pesos de 1993)	PRO (pesos)	IFT (pesos)
I	837	12,489	64,357	377.14	30,198	38,619,155
II	138	759	1,482	12.25	16,143	889,696
III	304	1,635	3,664	17.05	10,431	2,198,884
IV	99	1,110	2,392	19.45	17,521	1,435,412
V	113	884	4,105	20.09	22,724	2,463,168
VI	154	1,183	4,471	38.38	32,446	2,683,055
VII	0	0	0	0.00	0	0
VIII	513	3,105	7,088	77.47	24,950	4,253,965
IX	18	59	55	0.56	9,409	32,837
Sonora						
I	581	14,363	65,199	463.23	32,251	39,125,144
II	161	5,024	8,690	95.23	18,955	5,215,993
III	356	947	1,096	20.90	22,067	657,759
IV	135	1,633	2,550	31.59	19,346	1,530,619
V	34	827	5,326	24.10	29,138	3,195,995
VI	180	1,807	56,688	50.40	27,892	34,013,781
VII	0	0	0	0.00	0	0
VIII	568	14,783	17,968	266.57	18,032	10,786,499
IX	24	523	83	7.07	13,513	50,309
Tabasco						
I	396	5,056	34,779	147.19	29,111	20,869,639
II	135	217	72	1.53	7,060	43,464
III	170	328	418	3.21	9,797	250,950
IV	51	185	2,199	3.18	17,190	1,319,316
V	12	1,015	279,472	1,217.32	1,199,331	167,683,716
VI	77	464	1,398	10.31	22,214	838,998
VII	8	33	0	0.45	13,609	13
VIII	152	679	2,058	12.39	18,244	1,235,080
IX	0	0	0	0.00	0	0
Tamauli- pas						
I	984	11,007	52,877	268.84	24,425	31,730,877
II	210	2,888	568,452	19.11	6,616	341,072,353

Entidad	UE (número)	PO (número)	K (miles de pesos de 1993)	VA (millones de pesos de 1993)	PRO (pesos)	IFT (pesos)
III	245	502	174	4.06	8,093	104,722
IV	149	1,160	1,346	21.82	18,812	807,984
V	42	10,588	54,817	-315.59	0	32,894,610
VI	127	906	1,710	10.24	11,303	1,026,208
VII	0	0	0	0.00	0	0
VIII	440	18,840	60,743	288.12	15,293	36,453,557
IX	33	1,494	521	19.51	13,056	313,041
Tlaxcala						
I	979	2,603	17,043	84.04	32,286	10,226,687
II	264	8,702	30,704	163.40	18,777	18,425,810
III	74	200	481	1.61	8,071	288,834
IV	24	455	2,757	12.82	28,170	1,654,517
V	25	2,859	25,517	171.50	59,986	15,311,362
VI	87	1,256	17,281	24.36	19,398	10,368,845
VII	3	370	1,974	13.17	35,602	1,184,377
VIII	172	3,368	16,337	80.14	23,795	9,803,626
IX	6	445	535	7.85	17,638	320,945
Veracruz						
I	3,385	39,414	253,786	1,299.46	32,969	152,287,138
II	864	6,002	24,448	104.94	17,484	14,671,325
III	816	1,680	1,975	16.55	9,850	1,185,381
IV	218	3,974	34,216	267.75	67,375	20,531,073
V	72	18,534	266,138	294.83	15,908	159,690,358
VI	392	2,313	14,164	78.94	34,129	8,499,328
VII	5	5,676	27,570	419.69	73,941	16,544,096
VIII	750	5,171	57,183	123.18	23,821	34,311,644
IX	13	73	24	1.11	15,179	14,675
Yucatán						
I	1,686	10,363	38,228	210.93	20,354	22,940,981
II	636	12,559	32,034	289.33	23,038	19,225,349
III	296	1,296	209	15.29	11,800	125,928
IV	90	709	1,219	11.89	16,765	731,533
V	53	705	4,116	18.20	25,810	2,469,899

Entidad	UE (número)	PO (número)	K (miles de pesos de 1993)	VA (millones de pesos de 1993)	PRO (pesos)	IFT (pesos)
VI	86	1,609	27,183	62.73	38,987	16,310,297
VII	0	0	0	0.00	0	0
VIII	282	1,274	2,285	23.05	18,097	1,371,292
IX	20	85	85	0.91	10,680	51,254
Zacatecas						
I	1,136	3,483	3,043	33.32	9,568	1,827,076
II	197	1,119	224	3.17	2,830	135,141
III	136	264	100	1.90	7,205	59,889
IV	24	136	1	1.12	8,271	695
V	18	67	3	0.94	14,097	2,108
VI	127	446	911	3.45	7,741	546,715
VII	0	0	0	0.00	0	0
VIII	321	750	727	7.24	9,652	436,473
IX	0	0	0	0.00	0	0

^{*} I: productos alimenticios, bebidas y tabaco; II: textiles, prendas de vestir e industrias del cuero; III: industrias de la madera y productos de la madera; IV: imprentas, papel y editoriales; V: sustancias químicas, derivados del petróleo, productos de caucho y plástico; VI: productos de minerales no metálicos, excepto derivados de petróleo y carbón; VII: industrias metálicas básicas; VIII: productos metálicos, maquinaria y equipo y IX: otras industrias manufactureras.

Fuente: XI Censo Industrial del INEGI.

1.9 Variables censales utilizadas, 1993*

Entidad	UE (número)	PO (núme- ro)	K (miles de pesos de 1993)	VA (millones de pesos de 1993)	PRO (pesos)	IFT (pesos)
Aguasca- lientes						
I	1,045	8,913	34,009	345.73	38,790	20,408,763
II	584	16,135	31,931	273.96	16,979	19,165,062
III	322	1,315	1,083	19.78	15,042	650,486
IV	159	1,499	4,527	43.73	29,170	2,717,038
V	39	1,090	27,743	35.41	32,488	16,646,212

Entidad	UE (número)	PO (núme- ro)	K (miles de pesos de 1993)	VA (millones de pesos de 1993)	PRO (pesos)	IFT (pesos)
VI	339	1,808	9,941	41.78	23,108	5,965,360
VII	0	93	130	3.66	39,402	77,990
VIII	729	16,279	44,028	1,045.58	64,229	26,423,328
IX	0	132	539	2.49	12,630	323,404
Baja Cali- fornia						
I	1,350	19,284	74,409	865.14	44,863	44,653,275
II	379	8,889	6,083	171.43	19,285	3,653,335
III	384	10,833	12,621	237.53	21,926	7,576,783
IV	398	4,736	11,432	118.23	24,964	6,861,282
V	144	13,581	21,084	389.75	28,698	12,655,884
VI	365	5,486	43,440	295.54	53,871	26,066,068
VII	0	828	2,504	43.55	52,597	1,502,753
VIII	984	74,656	64,597	1,882.00	25,209	38,788,133
IX	69	4,690	2,731	90.32	21,649	1,640,550
Baja California Sur						
I	530	5,461	14,204	144.25	26,414	8,524,538
II	74	1,014	-2	9.16	9,035	-864
III	145	331	458	3.79	11,445	275,232
IV	60	473	2,430	10.18	21,514	1,458,334
V	0	27	9	0.78	28,987	5,697
VI	130	490	278	13.38	27,314	166,758
VII	0	0	0	-0.03	0	0
VIII	184	821	1,080	16.54	20,147	648,190
IX	0	14	10	0.19	6,038	6,134
Campeche						
I	848	5,519	21,203	103.44	18,742	12,723,712
II	1,182	1,986	221	3.56	1,794	133,182
III	234	964	1,057	7.54	7,825	634,556
IV	53	544	1,818	10.12	18,600	1,091,287
V	0	53	87	1.29	24,291	52,303
VI	0	664	1,523	10.54	15,878	914,339

Entidad	UE (número)	PO (núme- ro)	K (miles de pesos de 1993)	VA (millones de pesos de 1993)	PRO (pesos)	IFT (pesos)
VII	0	0	0	0.00	0	0
VIII	238	785	475	14.05	17,899	285,351
IX	17	44	0	0.48	3,665	18
Coahuila						
I	1,609	16,155	80,585	1,141.05	70,631	48,357,673
II	455	20,723	26,314	372.44	17,973	15,796,469
III	654	4,156	2,528	71.56	17,219	1,518,328
IV	414	4,056	80,868	117.79	29,041	48,522,597
V	150	8,985	82,261	554.56	61,720	49,360,081
VI	989	10,342	182,048	792.26	76,606	109,233,180
VII	0	10,595	171,218	1,246.21	117,623	102,734,951
VIII	1,522	52,501	428,427	2,333.97	44,456	257,077,309
IX	97	1,697	11,960	24.72	14,214	7,176,627
Colima						
I	965	4,047	12,413	102.59	25,350	7,449,134
II	214	389	762	3.60	9,258	457,441
III	216	640	1,479	6.97	10,887	887,940
IV	72	612	871	9.45	15,437	523,006
V	0	491	3,938	30.95	63,027	2,362,864
VI	107	723	373	37.46	51,818	224,377
VII	0	0	0	0.00	0	0
VIII	235	818	1,061	13.24	16,186	636,927
IX	42	63	5	0.16	4,711	2,730
Chiapas						
I	2,858	12,619	26,441	289.97	22,979	15,869,359
II	1,816	2,763	54	13.63	4,931	33,457
III	1,155	2,789	1,847	23.77	8,522	1,109,299
IV	243	1,423	3,870	27.25	19,151	2,322,273
V	46	2,882	12,270	213.96	74,239	7,363,206
VI	822	2,319	660	17.58	7,583	396,656
VII	0	0	0	0.00	0	0
VIII	920	2,264	1,314	25.86	11,422	789,326
IX	90	187	80	1.70	3,742	47,940

Entidad	UE (número)	PO (núme- ro)	K (miles de pesos de 1993)	VA (millones de pesos de 1993)	PRO (pesos)	IFT (pesos)
Chihuahua						
I	2,369	17,586	77,648	928.68	52,808	46,596,016
II	507	26,463	14,401	518.61	19,598	8,651,414
III	1,043	16,457	4,196	384.11	23,340	2,524,218
IV	456	5,339	29,390	171.19	32,064	17,636,239
V	89	6,462	37,912	178.96	27,694	22,749,637
VI	1,036	6,952	33,368	387.60	55,753	20,023,733
VII	0	248	113	67.90	273,804	67,949
VIII	1,620	146,337	343,438	3,029.34	20,701	206,121,338
IX	0	768	183	13.49	18,172	110,226
Distrito Federal						
I	8,009	88,711	389,051	8,675.88	97,799	233,465,946
II	4,501	81,281	132,001	2,900.19	35,681	79,233,053
III	2,216	18,528	19,690	555.10	29,960	11,821,688
IV	4,605	69,420	1,016,696	3,829.97	55,171	610,045,554
V	1,801	97,214	480,691	8,884.82	91,394	288,453,705
VI	615	10,846	58,451	596.96	55,040	35,074,681
VII	36	4,807	41,794	389.36	80,999	25,078,517
VIII	5,634	117,754	427,291	6,811.35	57,844	256,421,485
IX	637	12,181	26,749	531.32	21,922	16,054,019
Durango						
I	1,129	8,582	43,753	410.69	47,855	26,255,123
II	270	14,039	14,666	145.58	10,370	8,805,056
III	702	14,101	36,474	256.08	18,160	21,890,238
IV	173	1,766	7,971	45.57	25,806	4,783,457
V	33	1,441	13,261	102.13	70,877	7,957,382
VI	594	2,940	5,650	52.67	17,914	3,391,314
VII	0	114	40	4.00	35,108	24,006
VIII	688	6,671	56,574	310.76	46,584	33,947,106
IX Guanajua- to	0	167	10	1.78	4,536	5,864

Entidad	UE (número)	PO (núme- ro)	K (miles de pesos de 1993)	VA (millones de pesos de 1993)	PRO (pesos)	IFT (pesos)
I	3,805	36,212	161,413	1,279.20	35,325	96,862,544
II	4,220	68,218	95,578	1,482.06	21,725	57,373,981
III	948	2,709	902	45.39	16,754	542,174
IV	561	6,267	39,585	168.41	26,872	23,753,565
V	511	16,824	60,649	2,026.30	120,441	36,396,315
VI	1,405	8,781	15,279	236.71	26,957	9,170,746
VII	13	863	7,545	56.58	65,565	4,527,209
VIII	2,621	20,320	96,250	651.50	32,062	57,758,169
IX	91	536	56	4.43	7,025	33,725
Guerrero						
I	2,930	10,724	40,547	301.05	28,073	24,332,489
II	1,374	3,790	6,843	30.13	7,951	4,107,531
III	1,511	4,693	4,501	38.04	8,105	2,702,250
IV	0	1,212	2,287	36.13	29,814	1,372,672
V	0	150	215	2.10	13,994	128,804
VI	337	1,550	2,948	82.85	53,455	1,769,584
VII	22	56	158	0.48	8,641	94,924
VIII	754	1,496	1,285	16.48	11,013	771,408
IX	1,229	2,819	477	25.05	7,153	287,103
Hidalgo						
I	2,123	8,273	52,297	362.39	43,804	31,381,749
II	567	19,983	44,223	411.16	20,576	26,541,794
III	542	1,752	1,048	16.56	9,451	629,792
IV	162	1,103	17,985	36.53	33,114	10,791,554
V	125	6,061	15,459	772.31	127,423	9,277,755
VI	362	5,746	305,545	718.84	125,103	183,329,257
VII	0	540	407	0.63	1,164	244,179
VIII	917	11,517	60,372	620.07	53,840	36,227,520
IX	43	509	257	10.24	13,207	154,343
Jalisco						
I	6,339	63,936	536,206	5,827.81	91,151	321,748,949
II	2,327	37,561	59,865	1,024.62	27,279	35,933,854
III	1,981	13,846	19,151	359.92	25,995	11,496,243

Entidad	UE (número)	PO (núme- ro)	K (miles de pesos de 1993)	VA (millones de pesos de 1993)	PRO (pesos)	IFT (pesos)
IV	996	10,407	66,812	434.80	41,780	40,091,503
V	770	32,843	267,579	2,589.71	78,851	160,560,472
VI	1,578	12,156	70,606	932.44	76,706	42,368,470
VII	12	1,953	57,997	123.73	63,354	34,799,005
VIII	3,748	47,434	199,449	2,467.51	52,020	119,688,174
IX	242	2,606	1,912	69.02	12,377	1,148,368
México						
I	9,349	68,103	453,732	6,145.05	90,232	272,266,323
II	2,092	67,852	290,301	3,383.38	49,864	174,207,458
III	1,761	14,185	19,370	407.90	28,756	11,627,938
IV	1,183	25,822	275,592	1,518.20	58,795	165,365,700
V	1,083	76,619	727,246	6,335.32	82,686	436,378,180
VI	1,512	25,185	150,323	2,486.73	98,738	90,203,898
VII	65	14,186	5,671	497.65	35,081	3,408,344
VIII	5,324	133,687	913,024	9,339.56	69,861	547,867,727
IX	155	5,957	34,555	294.35	42,596	20,735,403
Michoacán						
I	4,175	23,965	114,509	644.09	26,876	68,715,259
II	1,935	6,494	7,927	71.25	10,972	4,759,015
III	3,607	12,645	11,200	131.65	10,411	6,724,770
IV	370	3,182	20,832	249.82	78,509	12,500,345
V	131	4,658	83,584	372.07	79,877	50,152,403
VI	2,228	6,189	7,639	49.29	7,964	4,585,596
VII	13	2,677	128,630	863.44	322,542	77,179,189
VIII	1,868	6,608	6,621	118.36	17,912	3,975,166
IX	533	1,265	248	18.19	13,781	149,346
Morelos						
I	1,757	10,161	67,525	359.42	35,372	40,519,209
II	336	5,454	16,311	206.25	37,817	9,788,846
III	282	765	508	9.55	12,482	305,218
IV	0	1,502	11,674	47.23	31,445	7,005,074
V	84	6,599	111,251	911.21	138,082	66,753,519
VI	419	3,182	8,629	112.98	35,507	5,178,814

Entidad	UE (número)	PO (núme- ro)	K (miles de pesos de 1993)	VA (millones de pesos de 1993)	PRO (pesos)	IFT (pesos)
VII	0	0	0	0.00	0	0
VIII	893	10,064	20,909	2,174.96	216,113	12,549,638
IX	20	648	254	25.36	27,075	152,688
Nayarit						
I	1,066	9,507	22,216	408.62	42,981	13,333,530
II	213	494	75	5.27	10,665	45,081
III	288	821	248	8.71	10,608	149,334
IV	99	525	1,295	9.27	17,656	777,368
V	12	260	251	7.51	28,880	150,766
VI	199	704	735	10.15	14,418	441,501
VII	0	0	0	0.00	0	0
VIII	374	840	461	10.95	13,040	277,037
IX	30	67	1	0.43	4,920	468
Nuevo León						
I	2,116	37,668	362,520	3,346.81	88,850	217,526,948
II	931	21,317	33,793	529.26	24,828	20,284,594
III	978	7,194	6,022	159.19	22,129	3,615,778
IV	1,033	15,981	124,947	873.93	54,686	74,974,879
V	652	31,869	365,288	2,239.09	70,259	219,185,717
VI	592	26,282	316,773	1,959.05	74,540	190,074,464
VII	51	8,368	451,816	767.54	91,723	271,093,115
VIII	3,071	97,399	465,129	5,043.97	51,787	279,116,615
IX	216	2,852	3,500	54.39	35,019	2,100,965
Oaxaca						
I	5,314	19,153	50,213	605.88	31,634	30,135,482
II	2,287	4,051	416	17.03	4,205	251,104
III	1,627	6,126	4,625	70.45	11,499	2,777,188
IV	164	1,589	38,085	16.34	10,285	22,851,754
V	105	3,114	8,619	2,695.42	865,582	5,172,604
VI	867	3,087	10,721	236.62	76,650	6,433,922
VII	0	0	0	0.00	0	0
VIII	986	2,715	1,084	40.87	15,055	651,764

Entidad	UE (número)	PO (núme- ro)	K (miles de pesos de 1993)	VA (millones de pesos de 1993)	PRO (pesos)	IFT (pesos)
IX	105	222	39	1.81	8,236	23,607
Puebla						
I	7,554	35,428	123,660	1,144.42	32,303	74,210,302
II	3,578	50,826	110,374	1,047.66	20,613	66,244,694
III	3,477	7,932	4,778	70.23	8,854	2,869,997
IV	538	4,452	22,713	139.88	31,420	13,629,740
V	287	7,584	88,179	669.97	88,340	52,910,202
VI	5,763	18,636	23,761	232.06	12,452	14,264,284
VII	0	2,097	101,364	316.27	150,820	60,819,046
VIII	2,590	31,899	145,336	1,347.61	42,246	87,214,383
IX	350	1,307	294	37.26	17,950	177,132
Querétaro						
I	839	10,440	146,577	842.79	80,727	87,950,330
II	389	10,015	26,433	241.78	24,142	15,864,066
III	381	1,449	1,483	17.13	11,821	890,417
IV	194	4,314	72,273	466.47	108,129	43,365,696
V	96	7,197	68,461	461.06	64,063	41,079,319
VI	258	3,098	31,674	150.28	48,509	19,005,487
VII	0	122	558	4.12	33,768	335,049
VIII	843	23,668	292,232	1,356.85	57,328	175,348,704
IX	0	215	130	4.62	12,245	78,205
Quintana Roo						
I	791	4,237	18,040	164.98	38,939	10,825,435
II	294	611	356	8.17	13,372	213,898
III	303	1,177	1,405	16.67	14,160	843,492
IV	99	797	2,656	30.26	37,971	1,593,999
V	0	53	28	1.25	23,677	16,804
VI	69	877	4,554	25.22	28,757	2,732,965
VII	0	0	0	0.00	0	0
VIII	206	534	492	9.14	17,107	295,575
IX	10	21	41	1.38	9,955	24,576

Entidad	UE (número)	PO (núme- ro)	K (miles de pesos de 1993)	VA (millones de pesos de 1993)	PRO (pesos)	IFT (pesos)
San Luis Potosí						
I	2,111	19,401	75,855	1,546.09	79,691	45,520,745
II	649	9,347	23,266	218.32	23,357	13,963,606
III	707	3,480	5,200	71.58	20,570	3,121,674
IV	298	4,377	9,746	191.58	43,769	5,849,568
V	88	2,982	51,040	184.13	61,746	30,625,330
VI	492	3,297	17,929	306.95	93,101	10,758,699
VII	22	5,195	294,879	364.06	70,078	176,929,419
VIII	1,108	17,956	119,370	742.14	41,331	71,629,200
IX	55	593	4,363	59.42	46,338	2,618,019
Sinaloa						
I	2,069	25,438	149,400	890.40	35,003	89,650,266
II	541	1,266	418	15.18	11,987	251,480
III	617	2,114	1,276	32.38	15,318	766,190
IV	284	4,042	7,832	97.01	23,999	4,700,728
V	78	985	4,500	70.62	71,692	2,700,436
VI	311	1,909	4,067	92.52	48,465	2,440,777
VII	0	0	0	0.00	0	0
VIII	958	4,463	4,828	119.80	26,842	2,898,642
IX	83	235	199	5.40	9,893	119,398
Sonora						
I	1,906	24,845	98,883	1,479.50	59,549	59,339,968
II	496	12,320	2,971	234.26	19,015	1,787,805
III	845	4,256	6,817	67.44	15,845	4,092,039
IV	352	3,820	8,177	157.15	41,140	4,907,668
V	75	2,734	5,646	111.35	40,728	3,388,581
VI	435	2,898	33,074	315.10	108,729	19,845,391
VII	0	1,807	12,996	382.44	211,643	7,798,254
VIII	1,183	32,915	25,402	1,270.56	38,601	15,254,183
IX	0	944	121	20.12	15,230	73,252
Tabasco						
I	1,198	8,702	18,630	362.13	41,615	11,181,765

Entidad	UE (número)	PO (núme- ro)	K (miles de pesos de 1993)	VA (millones de pesos de 1993)	PRO (pesos)	IFT (pesos)
II	381	618	264	4.17	6,744	158,693
III	452	933	329	6.39	6,849	197,630
IV	180	1,542	4,796	42.11	27,310	2,878,427
V	3	4,217	444,711	721.34	171,055	266,828,042
VI	133	1,036	5,901	108.17	104,412	3,541,269
VII	0	0	0	0.00	0	0
VIII	491	1,374	1,389	20.64	15,021	834,075
IX	14	31	4	0.48	6,504	2,386
Tamauli- pas						
I	2,275	18,323	62,740	826.18	45,090	37,651,178
II	643	12,291	8,077	326.76	26,585	4,850,880
III	659	3,112	4,094	38.84	12,481	2,457,489
IV	492	5,692	11,972	175.97	30,916	7,185,568
V	120	15,141	127,877	1,816.87	119,997	76,732,134
VI	368	3,467	4,941	82.70	23,855	2,965,928
VII	0	302	962	14.83	49,106	577,427
VIII	1,213	74,389	61,652	1,795.74	24,140	37,020,773
IX	114	1,635	63	27.37	11,174	38,195
Tlaxcala						
I	1,298	5,629	31,999	175.30	31,142	19,201,658
II	648	12,963	22,725	282.06	21,759	13,640,211
III	219	455	253	5.34	11,747	152,058
IV	88	1,066	22,296	123.79	116,124	13,378,294
V	30	4,207	19,124	227.58	54,097	11,475,935
VI	202	2,520	88,283	192.67	76,457	52,970,562
VII	0	266	9,705	17.39	65,375	5,823,301
VIII	479	5,980	30,501	217.40	36,355	18,303,183
IX	0	400	516	6.33	8,357	309,765
Veracruz						
I	6,844	51,353	275,217	2,499.94	48,681	165,150,554
II	1,878	7,154	6,102	117.33	16,401	3,664,290
III	2,227	4,700	3,127	30.70	6,532	1,877,892

Entidad	UE (número)	PO (núme- ro)	K (miles de pesos de 1993)	VA (millones de pesos de 1993)	PRO (pesos)	IFT (pesos)
IV	583	6,849	33,073	151.91	22,179	19,846,420
V	140	21,766	365,906	6,643.67	305,231	219,552,561
VI	774	4,675	34,521	232.93	49,825	20,714,188
VII	0	3,422	149,326	467.75	136,688	89,596,962
VIII	2,174	9,133	17,298	212.81	23,301	10,382,364
IX	78	139	100	1.10	4,772	60,122
Yucatán						
I	3,870	19,406	73,116	760.23	39,175	43,877,435
II	7,414	19,507	14,479	158.25	8,112	8,695,061
III	690	2,388	2,346	27.26	11,417	1,408,364
IV	283	2,419	-13,017	59.68	24,671	-7,808,986
V	0	2,015	11,564	73.35	36,403	6,939,472
VI	218	4,019	13,460	179.20	44,589	8,077,441
VII	0	421	1,051	12.54	29,794	630,971
VIII	680	4,397	6,972	88.31	20,085	4,185,010
IX	117	900	700	13.58	15,037	420,490
Zacatecas						
I	1,244	6,536	16,155	181.79	27,813	9,695,702
II	601	1,476	637	11.52	7,805	383,014
III	433	1,177	519	11.98	10,182	311,676
IV	98	543	830	13.95	25,690	498,411
V	0	36	29	0.66	18,472	17,405
VI	474	2,004	3,410	19.96	9,962	2,046,908
VII	0	85	81	2.09	24,640	48,562
VIII	720	4,386	32,758	101.44	23,129	19,656,680
IX	24	84	84	1.01	9,206	50,493

^{*} I: productos alimenticios, bebidas y tabaco; II: textiles, prendas de vestir e industrias del cuero; III: industrias de la madera y productos de la madera; IV: imprentas, papel y editoriales; V: sustancias químicas, derivados del petróleo, productos de caucho y plástico; VI: productos de minerales no metálicos, excepto derivados de petróleo y carbón; VII: industrias metálicas básicas; VIII: productos metálicos, maquinaria y equipo y IX: otras industrias manufactureras.

Fuente: XIV Censo Industrial del INEGI.

1.10 Variables censales utilizadas, 2003*

Entidad	UE (número)	PO (número)	K (miles de pesos de 1993)	VA (millones de pesos de 1993)	PRO (pesos)	IFT (pesos)
Aguas- calien- tes						
I	1,159	10,889	58,908	506.59	46,523	35,349,133
II	449	24,402	12,801	540.63	22,155	7,690,236
III	232	783	2,337	11.05	14,117	1,402,448
IV	197	1,458	2,381	22.23	15,249	1,429,354
V	75	2,311	6,526	210.92	91,266	3,916,654
VI	94	1,775	3,853	163.24	91,968	2,312,366
VII	11	183	141	2.38	13,028	84,757
VIII	1,076	25,721	90,392	2,591.75	100,764	54,245,384
IX	117	695	228	10.14	14,595	137,365
Baja Califor- nia						
I	1,720	17,833	104,327	1,255.38	70,397	62,603,360
II	330	12,549	18,682	235.69	18,781	11,214,428
III	154	2,465	2,976	83.35	33,813	1,786,877
IV	394	10,679	41,435	599.66	56,153	24,865,172
V	158	20,411	7,965	442.51	21,680	4,787,091
VI	211	4,874	48,102	454.99	93,350	28,863,119
VII	27	1,569	15,683	233.79	149,008	9,410,393
VIII	1,245	137,767	34,428	4,884.30	35,453	20,711,918
IX	244	42,295	55,496	1,027.19	24,286	33,314,225
Baja Califor- nia Sur						
I	640	5,554	10,866	124.85	22,479	6,522,020
II	68	198	112	1.45	7,318	67,537
III	64	169	98	2.17	12,850	58,840
IV	56	273	156	3.52	12,888	93,623
V	0	138	275	6.64	48,104	165,080

Entidad	UE (número)	PO (número)	K (miles de pesos de 1993)	VA (millones de pesos de 1993)	PRO (pesos)	IFT (pesos)
VI	120	548	4,412	35.09	64,038	2,647,281
VII	0	1	0	0.00	3,619	0
VIII	338	836	880	10.91	13,056	528,560
IX	21	43	27	1.54	35,730	15,941
Campe- che						
I	811	4,365	4,018	79.58	18,231	2,412,706
II	568	7,691	13,646	94.45	12,281	8,190,932
III	139	332	75	3.40	10,244	45,153
IV	78	302	77	3.40	11,248	46,299
V	8	372	353	23.96	64,410	212,221
VI	34	342	1,630	17.85	52,182	977,839
VII	0	0	0	0.00	0	0
VIII	451	1,010	488	9.44	9,345	293,396
IX	70	100	62	0.55	5,527	37,098
Coahuila						
I	2,026	22,592	55,241	1,296.47	57,386	33,153,913
II	371	46,382	14,915	1,222.79	26,364	8,967,551
III	210	743	456	25.95	34,925	273,747
IV	479	3,802	27,885	417.57	109,829	16,732,615
V	146	9,153	41,009	958.23	104,691	24,608,918
VI	574	8,363	54,594	960.17	114,811	32,759,978
VII	52	10,155	51,427	1,276.16	125,668	30,860,299
VIII	2,107	110,815	1,166,339	5,588.47	50,431	699,847,700
IX	161	1,942	857	30.69	15,802	515,105
Colima						
I	891	6,408	12,445	235.81	36,799	7,469,808
II	151	395	482	3.28	8,311	289,386
III	132	462	144	5.43	11,761	86,606
IV	107	367	480	4.92	13,398	287,928
V	17	515	922	22.51	43,705	553,619
VI	110	708	19,066	435.66	615,338	11,439,859
VII	0	10	23	0.53	53,127	13,756

Entidad	UE (número)	PO (número)	K (miles de pesos de 1993)	VA (millones de pesos de 1993)	PRO (pesos)	IFT (pesos)
VIII	516	1,896	1,154	30.78	16,233	693,140
IX	56	187	274	1.93	10,332	164,666
Chiapas						
I	3,799	16,926	52,584	599.88	35,441	31,556,982
II	1,279	2,571	486	14.13	5,496	292,428
III	450	1,218	476	21.12	17,340	285,807
IV	397	1,685	1,968	30.66	18,194	1,181,617
V	38	2,244	112,787	2,475.22	1,103,038	67,672,952
VI	726	2,010	1,755	25.94	12,904	1,053,925
VII	0	13	0	0.09	6,681	5
VIII	2,642	6,836	1,774	69.25	10,131	1,067,292
IX	245	532	121	4.31	8,103	73,027
Chihu- ahua						
I	2,549	22,068	56,173	854.92	38,740	33,712,617
II	435	13,934	3,262	549.60	39,443	1,962,570
III	429	6,616	6,320	133.36	20,158	3,794,752
IV	421	4,730	9,311	190.73	40,324	5,588,719
V	76	11,185	25,543	710.63	63,534	15,330,537
VI	572	6,311	41,792	822.05	130,257	25,077,668
VII	37	1,376	454	78.18	56,820	272,842
VIII	2,299	267,973	151,154	12,856.35	47,976	90,799,679
IX	144	17,998	13,734	595.34	33,078	8,247,312
Distrito Federal						
I	10,310	89,519	297,064	3,495.77	39,051	178,274,452
II	2,607	70,853	45,891	1,892.80	26,715	27,563,229
III	995	4,081	3,074	69.07	16,926	1,846,151
IV	4,024	51,907	137,884	1,097.76	21,149	82,751,222
V	1,650	102,806	791,738	8,312.35	80,855	475,083,657
VI	522	8,757	92,841	130.05	14,851	55,707,902
VII	151	4,762	15,584	231.94	48,707	9,352,464
VIII	6,179	93,539	85,035	2,548.42	27,244	51,058,284

Entidad	UE (número)	PO (número)	K (miles de pesos de 1993)	VA (millones de pesos de 1993)	PRO (pesos)	IFT (pesos)
IX	1,289	21,633	23,077	565.70	26,150	13,854,701
Durango						
I	1,284	13,450	163,858	777.26	57,789	98,320,297
II	276	29,277	56,873	436.30	14,903	34,135,591
III	331	6,893	3,240	124.17	18,014	1,947,015
IV	222	1,873	-11,877	113.06	60,364	-7,125,444
V	40	1,546	4,347	54.81	35,450	2,608,595
VI	564	4,285	10,427	84.63	19,751	6,258,195
VII	23	851	1,202	28.84	33,885	721,819
VIII	1,179	12,825	35,794	389.15	30,343	21,481,277
IX	80	1,280	3,448	70.62	55,170	2,069,552
Gua- najuato						
I	5,323	43,863	141,140	2,337.12	53,282	84,701,381
II	4,439	94,701	111,175	1,870.68	19,754	66,742,945
III	720	1,772	1,095	15.16	8,554	657,625
IV	792	8,226	31,819	227.92	27,707	19,094,968
V	615	24,955	282,376	2,209.64	88,545	169,435,847
VI	1,412	8,657	8,490	232.07	26,807	5,097,385
VII	80	2,270	4,247	393.11	173,176	2,548,810
VIII	4,098	36,751	260,840	5,602.79	152,453	156,518,659
IX	334	2,157	5,495	43.41	20,124	3,297,892
Guerre- ro						
I	4,382	13,377	14,929	374.45	27,992	8,962,455
II	4,105	11,399	1,119	33.24	2,916	676,241
III	502	1,885	924	16.37	8,683	554,891
IV	239	798	922	10.11	12,666	553,298
V	71	415	43	7.10	17,107	26,078
VI	579	1,941	22,725	194.72	100,321	13,635,911
VII	67	177	115	1.30	7,328	69,121
VIII	1,998	3,889	1,854	27.20	6,994	1,114,028
IX	3,038	6,591	807	50.45	7,655	486,566

Entidad	UE (número)	PO (número)	K (miles de pesos de 1993)	VA (millones de pesos de 1993)	PRO (pesos)	IFT (pesos)
Hidalgo						
I	3,185	15,245	-103,772	571.80	37,507	-62,257,039
II	755	29,273	35,808	727.22	24,843	21,496,397
III	346	885	547	7.90	8,929	328,523
IV	240	1,626	1,491	43.09	26,501	895,550
V	135	9,126	336,069	1,946.69	213,312	201,645,039
VI	392	5,897	77,925	1,906.02	323,218	46,757,470
VII	30	727	5,280	15.50	21,325	3,168,340
VIII	1,508	7,516	2,357	235.94	31,392	1,417,012
IX	183	1,362	1,946	26.13	19,184	1,168,170
Jalisco						
I	8,422	82,908	446,826	6,553.95	79,051	268,128,605
II	2,613	46,368	41,638	832.93	17,963	25,001,335
III	1,266	5,295	4,499	80.81	15,262	2,701,293
IV	1,340	14,087	44,588	430.83	30,584	26,758,245
V	977	43,277	231,579	2,357.61	54,477	138,964,470
VI	2,687	15,225	34,672	852.81	56,014	20,809,542
VII	145	3,731	21,694	241.48	64,723	13,017,927
VIII	6,364	102,742	319,198	3,850.08	37,473	191,560,072
IX	928	12,254	11,752	261.11	21,308	7,055,965
México						
I	17,046	93,540	479,985	8,581.26	91,739	288,028,237
II	3,090	70,305	45,551	1,755.73	24,973	27,358,610
III	1,443	5,649	3,690	106.94	18,931	2,216,058
IV	1,695	30,912	212,443	2,090.39	67,624	127,477,969
V	1,261	79,977	570,660	7,243.70	90,572	342,428,144
VI	1,778	21,008	117,746	2,052.40	97,696	70,655,833
VII	179	7,912	47,659	393.52	49,737	28,598,267
VIII	8,113	129,599	28,705	6,958.71	53,694	17,274,824
IX	738	14,930	31,664	700.97	46,950	19,004,570
Mi- choacán						
I	6,066	28,318	51,615	986.18	34,825	30,980,476

Entidad	UE (número)	PO (número)	K (miles de pesos de 1993)	VA (millones de pesos de 1993)	PRO (pesos)	IFT (pesos)
II	2,673	10,885	10,515	154.06	14,153	6,313,093
III	2,724	8,757	4,371	117.85	13,458	2,625,811
IV	458	3,548	11,101	238.90	67,334	6,661,923
V	140	3,910	12,839	198.82	50,849	7,705,201
VI	3,310	8,597	8,155	73.11	8,504	4,896,291
VII	28	3,196	3,415	519.67	162,599	2,050,486
VIII	4,919	13,626	8,042	178.15	13,074	4,830,700
IX	1,076	3,069	1,675	28.18	9,181	1,006,434
Morelos						
I	2,864	11,408	31,617	317.41	27,824	18,974,643
II	531	6,263	3,092	182.83	29,192	1,857,881
III	303	688	400	6.90	10,033	240,286
IV	237	1,382	5,621	46.08	33,343	3,373,002
V	100	7,086	106,696	2,812.82	396,954	64,020,305
VI	582	4,694	15,951	300.04	63,919	9,572,615
VII	0	41	4	1.04	25,250	2,188
VIII	1,550	10,215	26,746	730.96	71,558	16,051,628
IX	108	2,676	4,564	79.28	29,628	2,739,331
Nayarit						
I	1,197	7,687	-3,472	268.78	34,966	-2,080,006
II	182	446	604	3.43	7,689	362,365
III	172	574	292	5.21	9,069	175,533
IV	130	459	667	5.04	10,978	400,587
V	16	215	232	7.44	34,624	139,489
VI	257	872	1,551	18.15	20,815	930,859
VII	0	0	0	0.00	0	0
VIII	656	1,466	1,754	13.39	9,137	1,053,129
IX	95	326	389	3.01	9,232	233,771
Nuevo León						
I	2,528	49,258	392,159	3,227.95	65,531	235,315,085
II	841	19,913	17,132	454.10	22,804	10,287,298
III	504	2,958	3,752	79.96	27,032	2,252,619

Entidad	UE (número)	PO (número)	K (miles de pesos de 1993)	VA (millones de pesos de 1993)	PRO (pesos)	IFT (pesos)
IV	1,088	17,630	112,288	792.78	44,968	67,380,035
V	680	37,739	764,926	5,134.77	136,060	458,970,569
VI	481	28,161	114,605	1,692.54	60,102	68,774,367
VII	149	12,970	178,440	1,276.00	98,381	107,069,335
VIII	4,164	145,232	608,722	8,920.07	61,419	365,291,272
IX	388	10,995	-2,303	295.29	26,857	-1,377,181
Oaxaca						
I	7,240	22,045	51,948	740.16	33,575	31,177,445
II	4,279	8,365	1,669	29.11	3,480	1,004,644
III	879	3,789	3,711	45.34	11,967	2,228,053
IV	232	1,531	2,198	53.39	34,875	1,319,656
V	95	4,751	102,565	3,741.70	787,560	61,540,953
VI	1,088	4,018	38,693	427.20	106,321	23,217,322
VII	0	4	0	0.03	7,178	2
VIII	2,738	5,025	2,968	40.47	8,054	1,782,834
IX	265	705	618	8.87	12,582	371,154
Puebla						
I	9,082	42,299	185,528	2,016.71	47,677	111,333,940
II	5,141	83,255	60,820	1,396.52	16,774	36,525,005
III	1,343	2,680	837	23.59	8,801	503,096
IV	856	6,304	23,004	246.46	39,096	13,804,852
V	262	11,368	60,625	783.18	68,893	36,379,719
VI	5,303	17,158	24,793	844.46	49,217	14,882,437
VII	37	2,079	8,052	216.03	103,913	4,831,872
VIII	4,223	43,356	1,402,247	7,097.63	163,706	841,365,720
IX	559	2,763	3,766	64.65	23,397	2,260,792
Queré- taro						
I	1,328	11,786	55,799	608.35	51,617	33,483,983
II	305	19,449	11,083	433.42	22,285	6,657,571
III	480	1,164	2,033	26.47	22,741	1,220,494
IV	256	7,480	68,466	963.64	128,829	41,082,684
V	152	9,041	63,015	706.26	78,117	37,812,481

Entidad	UE (número)	PO (número)	K (miles de pesos de 1993)	VA (millones de pesos de 1993)	PRO (pesos)	IFT (pesos)
VI	333	3,960	91,166	239.93	60,589	54,701,356
VII	17	885	870	33.42	37,759	522,065
VIII	1,198	39,057	232,099	2,742.40	70,215	139,275,317
IX	88	1,542	2,247	23.42	15,189	1,349,046
Quinta- na Roo						
I	821	4,071	7,835	107.70	26,456	4,702,530
II	250	710	463	6.21	8,741	277,787
III	148	859	209	9.42	10,971	125,705
IV	120	1,128	6,053	49.05	43,485	3,632,019
V	7	285	2,743	8.58	30,121	1,646,023
VI	41	524	3,727	39.84	76,027	2,236,446
VII	0	9	2	0.06	7,158	1,017
VIII	549	1,957	1,270	24.50	12,521	762,649
IX	60	347	98	6.82	19,642	58,911
San Luis Potosí						
I	2,440	22,046	73,265	1,105.35	50,138	43,967,911
II	473	8,666	81,845	198.88	22,949	49,110,187
III	376	1,056	468	17.67	16,732	281,400
IV	363	5,202	93,283	218.11	41,929	55,971,967
V	116	5,484	56,720	262.46	47,859	34,034,007
VI	476	4,353	84,378	732.26	168,220	50,628,286
VII	38	6,002	31,482	440.12	73,328	18,891,706
VIII	1,870	33,216	106,000	1,820.25	54,800	63,613,127
IX	154	1,035	934	67.64	65,356	560,921
Sinaloa						
I	2,811	27,817	86,237	1,019.89	36,664	51,753,039
II	320	2,053	594	22.41	10,914	357,073
III	271	916	2,687	13.95	15,230	1,612,402
IV	317	2,770	4,954	83.54	30,158	2,973,733
V	86	1,610	4,504	49.80	30,932	2,702,859
VI	292	1,770	3,792	60.56	34,217	2,275,884

Entidad	UE (número)	PO (número)	K (miles de pesos de 1993)	VA (millones de pesos de 1993)	PRO (pesos)	IFT (pesos)
VII	13	120	119	3.11	25,930	71,414
VIII	1,703	9,640	4,974	207.71	21,547	2,988,351
IX	143	649	311	8.18	12,602	187,143
Sonora						
I	3,066	30,671	130,184	1,964.92	64,064	78,122,601
II	385	16,087	11,259	381.73	23,729	6,762,045
III	389	1,233	794	16.76	13,591	476,895
IV	391	3,506	18,856	71.57	20,414	11,315,182
V	110	3,591	3,398	192.95	53,733	2,040,511
VI	382	2,725	64,718	483.39	177,392	38,831,663
VII	21	1,710	58,291	199.41	116,615	34,975,458
VIII	1,844	58,205	102,402	1,941.16	33,350	61,464,478
IX	187	9,530	-13,619	364.96	38,295	-8,167,541
Tabasco						
I	1,586	12,563	26,633	557.18	44,351	15,984,530
II	459	828	966	9.35	11,298	580,091
III	258	563	500	4.68	8,320	300,166
IV	205	936	486	26.75	28,583	291,774
V	21	3,418	382,095	3,222.93	942,930	229,258,564
VI	170	790	21,185	227.93	288,520	12,711,309
VII	18	89	167	2.07	23,256	100,498
VIII	1,197	3,061	1,099	34.13	11,150	660,891
IX	64	211	400	2.23	10,558	239,805
Tamau- lipas						
I	2,565	20,869	7,952	652.22	31,253	4,779,458
II	396	19,396	55,908	339.87	17,523	33,552,603
III	434	1,449	697	24.02	16,579	419,078
IV	571	4,337	4,219	71.05	16,381	2,533,279
V	142	28,636	798,738	3,089.00	107,871	479,254,460
VI	309	4,533	6,440	141.28	31,167	3,866,008
VII	0	1,371	267	27.25	19,873	160,507
VIII	2,133	122,812	93,819	4,328.37	35,244	56,340,666

Entidad	UE (número)	PO (número)	K (miles de pesos de 1993)	VA (millones de pesos de 1993)	PRO (pesos)	IFT (pesos)
IX	172	8,518	7,527	174.24	20,456	4,519,597
Tlaxcala						
I	2,795	8,299	61,046	725.32	87,399	36,630,806
II	879	21,910	48,377	571.44	26,081	29,034,814
III	185	458	197	7.77	16,963	118,596
IV	111	1,452	38,888	130.21	89,678	23,333,117
V	22	3,982	9,515	318.69	80,033	5,710,306
VI	347	4,956	16,644	333.36	67,264	9,988,323
VII	28	984	5,724	87.91	89,344	3,435,089
VIII	977	7,189	3,967	221.10	30,755	2,383,292
IX	116	1,112	6,213	25.79	23,194	3,728,132
Vera- cruz						
I	8,945	54,936	208,255	3,257.77	59,301	124,975,142
II	2,210	12,527	4,466	120.85	9,648	2,684,788
III	1,082	2,405	1,736	15.96	6,636	1,042,792
IV	755	5,559	44,189	244.17	43,923	26,515,403
V	170	27,031	27,327	3,909.37	144,625	16,407,223
VI	662	4,116	68,214	708.23	172,068	40,930,066
VII	29	3,519	106,930	677.92	192,645	64,159,584
VIII	5,014	13,317	9,601	236.03	17,724	5,765,864
IX	403	1,064	369	9.44	8,869	221,617
Yucatán						
I	3,013	21,380	91,749	817.97	38,259	55,058,206
II	6,186	40,529	17,821	493.45	12,175	10,708,541
III	427	1,197	366	8.71	7,273	220,223
IV	260	2,013	3,409	27.80	13,811	2,046,394
V	106	3,930	51,559	225.28	57,323	30,936,992
VI	184	3,523	39,709	211.70	60,090	23,826,994
VII	20	379	1,856	12.52	33,030	1,113,927
VIII	1,148	7,142	9,706	118.26	16,559	5,826,654
IX	148	3,772	6,139	62.48	16,564	3,685,045

Entidad	UE (número)	PO (número)	K (miles de pesos de 1993)	VA (millones de pesos de 1993)	PRO (pesos)	IFT (pesos)
Zacate-						
cas						
I	1,414	11,061	30,609	986.29	89,168	18,369,702
II	287	4,498	1,248	86.20	19,163	750,492
III	341	692	357	6.41	9,266	214,520
IV	132	395	430	4.58	11,589	257,974
V	0	174	1	-2.03	-11,665	938
VI	445	1,737	1,910	54.02	31,100	1,146,896
VII	0	81	63	8.39	103,619	37,670
VIII	1,153	6,696	36,044	168.80	25,209	21,629,375
IX	58	121	80	1.29	10,683	48,108

^{*} I: productos alimenticios, bebidas y tabaco; II: textiles, prendas de vestir e industrias del cuero; III: industrias de la madera y productos de la madera; IV: imprentas, papel y editoriales; V: sustancias químicas, derivados del petróleo, productos de caucho y plástico; VI: productos de minerales no metálicos, excepto derivados de petróleo y carbón; VII: industrias metálicas básicas; VIII: productos metálicos, maquinaria y equipo y IX: otras industrias manufactureras.

Fuente: XVI Censo Industrial del INEGI.

1.11 Valor agregado, horas hombre trabajadas y productividad manufacturera

Periodo	VA (miles de pesos del 2003)	HHT (miles de horas)	PRO (pesos del 2003)
1994/01	113,560,165	271,156	419
1994/02	114,043,263	262,320	435
1994/03	125,276,238	277,941	451
1994/04	124,905,522	275,697	453
1994/05	122,575,753	279,334	439
1994/06	124,383,898	279,315	445
1994/07	117,085,799	273,705	428
1994/08	124,138,998	282,199	440
1994/09	120,681,103	270,317	446
1994/10	125,771,309	275,532	456

Periodo	VA (miles de pesos del 2003)	HHT (miles de horas)	PRO (pesos del 2003)
1994/11	127,861,890	272,076	470
1994/12	122,102,073	251,106	486
1995/01	136,257,673	263,742	517
1995/02	130,438,131	246,900	528
1995/03	143,998,663	261,777	550
1995/04	118,070,506	230,608	512
1995/05	122,926,660	250,774	490
1995/06	120,083,881	247,184	486
1995/07	112,398,460	239,329	470
1995/08	120,279,250	249,604	482
1995/09	116,593,257	239,344	487
1995/10	126,906,758	249,208	509
1995/11	127,205,716	243,978	521
1995/12	124,318,779	229,041	543
1996/01	138,996,279	255,272	545
1996/02	136,694,158	245,941	556
1996/03	139,243,120	255,318	545
1996/04	131,399,859	244,117	538
1996/05	138,164,101	260,543	530
1996/06	131,437,186	253,664	518
1996/07	131,054,596	264,566	495
1996/08	133,586,663	267,429	500
1996/09	127,719,222	254,724	501
1996/10	139,565,980	275,091	507
1996/11	134,582,654	259,719	518
1996/12	129,350,307	241,410	536
1997/01	135,861,248	270,749	502
1997/02	131,727,695	255,141	516
1997/03	133,596,587	254,593	525
1997/04	142,031,191	278,219	511
1997/05	139,465,981	276,054	505
1997/06	140,816,936	271,757	518
1997/07	135,867,043	283,333	480
1997/08	133,535,123	278,440	480

Periodo	VA (miles de pesos del 2003)	HHT (miles de horas)	PRO (pesos del 2003)
1997/09	136,235,080	274,651	496
1997/10	145,222,523	293,720	494
1997/11	141,550,853	274,212	516
1997/12	135,837,510	261,541	519
1998/01	138,370,119	282,195	490
1998/02	133,705,855	267,412	500
1998/03	150,850,882	290,017	520
1998/04	139,189,874	275,735	505
1998/05	146,306,736	284,572	514
1998/06	145,425,011	290,384	501
1998/07	139,243,041	296,478	470
1998/08	144,699,756	289,505	500
1998/09	144,214,837	284,800	506
1998/10	149,945,701	299,300	501
1998/11	141,841,355	278,652	509
1998/12	138,217,759	266,920	518
1999/01	135,718,270	280,072	485
1999/02	135,963,052	268,917	506
1999/03	148,069,902	297,915	497
1999/04	138,099,565	283,502	487
1999/05	141,657,773	286,720	494
1999/06	149,048,670	291,897	511
1999/07	140,127,362	298,293	470
1999/08	143,414,779	294,511	487
1999/09	141,534,890	288,044	491
1999/10	141,428,390	294,374	480
1999/11	145,016,057	288,980	502
1999/12	142,946,432	279,103	512
2000/01	140,609,955	291,172	483
2000/02	143,780,000	285,906	503
2000/03	159,111,605	305,123	521
2000/04	141,310,159	274,538	515
2000/05	154,727,741	298,543	518
2000/06	158,696,229	302,078	525

Periodo	VA (miles de pesos del 2003)	HHT (miles de horas)	PRO (pesos del 2003)
2000/07	149,102,101	297,412	501
2000/08	157,391,782	307,083	513
2000/09	153,913,690	293,347	525
2000/10	159,492,917	301,142	530
2000/11	152,863,192	289,814	527
2000/12	136,782,344	264,638	517
2001/01	142,526,546	293,052	486
2001/02	139,754,143	270,425	517
2001/03	156,402,513	294,471	531
2001/04	137,460,516	266,153	516
2001/05	148,735,666	288,070	516
2001/06	150,324,058	283,749	530
2001/07	141,927,368	281,486	504
2001/08	146,992,887	289,373	508
2001/09	142,040,963	273,756	519
2001/10	149,966,314	287,431	522
2001/11	144,033,471	271,912	530
2001/12	129,583,393	247,068	524
2002/01	138,162,443	273,781	505
2002/02	135,572,448	252,750	536
2002/03	139,105,406	253,769	548
2002/04	149,744,642	275,660	543
2002/05	149,440,406	273,728	546
2002/06	145,424,616	264,676	549
2002/07	144,910,650	275,912	525
2002/08	148,229,891	274,668	540
2002/09	141,695,380	258,690	548
2002/10	152,061,748	277,060	549
2002/11	144,012,635	258,599	557
2002/12	131,042,005	237,485	552
2003/01	140,729,248	264,451	532
2003/02	137,640,690	243,956	564
2003/03	148,900,431	258,648	576
2003/04	140,328,932	249,452	563

Periodo	VA (miles de pesos del 2003)	HHT (miles de horas)	PRO (pesos del 2003)
2003/05	148,422,125	259,027	573
2003/06	144,861,670	254,749	569
2003/07	141,361,802	264,181	535
2003/08	138,403,698	255,974	541
2003/09	140,622,989	250,505	561
2003/10	150,083,991	265,872	564
2003/11	139,540,744	245,741	568
2003/12	135,693,876	233,611	581
2004/01	141,017,575	249,538	565
2004/02	142,843,955	236,451	604
2004/03	162,853,793	261,569	623
2004/04	151,071,696	244,876	617
2004/05	153,215,938	249,110	615
2004/06	158,342,250	252,700	627
2004/07	153,311,541	257,017	597
2004/08	156,663,754	253,457	618
2004/09	156,900,136	249,037	630
2004/10	160,775,545	253,777	634
2004/11	154,733,866	248,651	622
2004/12	149,394,976	237,927	628
2005/01	146,985,533	247,805	593
2005/02	148,696,877	235,572	631
2005/03	155,882,961	244,353	638
2005/04	164,648,598	251,606	654
2005/05	160,911,654	251,577	640
2005/06	158,358,098	251,632	629
2005/07	146,223,059	250,692	583
2005/08	158,741,388	257,313	617
2005/09	156,477,678	248,405	630
2005/10	166,231,595	253,393	656
2005/11	163,980,485	252,238	650
2005/12	153,117,253	240,541	637
2006/01	158,936,904	251,381	632
2006/02	158,072,484	237,161	667

Periodo	VA (miles de pesos del 2003)	HHT (miles de horas)	PRO (pesos del 2003)
2006/03	175,624,017	258,126	680
2006/04	158,077,779	236,699	668
2006/05	176,132,663	255,297	690
2006/06	176,796,545	256,362	690
2006/07	159,513,341	254,469	627
2006/08	170,117,211	263,256	646
2006/09	164,293,435	253,863	647
2006/10	173,881,449	259,149	671
2006/11	172,447,040	252,212	684
2006/12	156,864,861	237,153	661
2007/01	160,892,021	254,682	632
2007/02	160,331,900	237,914	674
2007/03	178,485,522	256,669	695
2007/04	167,920,473	241,418	696
2007/05	180,891,781	257,964	701
2007/06	181,745,550	255,012	713
2007/07	168,971,921	255,740	661
2007/08	181,057,972	263,519	687
2007/09	170,321,566	250,728	679
2007/10	183,460,132	263,401	697
2007/11	176,992,435	251,479	704
2007/12	158,243,547	233,900	677
2008/01	173,809,670	254,620	683
2008/02	173,852,252	241,638	719
2008/03	173,833,768	238,769	728
2008/04	193,312,617	255,059	758
2008/05	181,935,632	253,489	718
2008/06	181,234,593	248,221	730
2008/07	175,838,859	256,596	685
2008/08	179,170,853	251,184	713
2008/09	171,314,165	245,358	698
2008/10	184,522,459	257,894	715
2008/11	167,284,335	237,640	704
2008/12	153,224,004	224,246	683

1.12 Valor de la producción por rama manufacturera en México* Miles de pesos (2003=100)

ΙX	338,964	251,575	294,949	321,482	338,362	351,383	342,384	319,842	324,483	327,574	390,304	333,835	378,141	371,833	289,206
VIII	33,506,553	30,487,689	39,856,510	44,613,610	46,787,184	48,415,890	54,194,474	51,970,233	48,673,346	45,152,211	47,137,292	47,631,920	52,192,109	52,807,136	50,290,132
VII	996'699'8	10,537,890	12,093,923	12,819,686	11,813,540	10,874,816	11,496,098	10,082,275	9,976,362	11,478,283	17,007,408	17,836,139	20,840,599	22,419,265	24,026,208
VI	6,671,647	4,458,182	5,347,292	5,629,893	6,142,769	6,602,961	7,037,044	6,916,845	7,011,958	7,046,477	7,231,488	7,424,763	7,744,336	7,895,466	7,605,032
^	21,426,696	20,739,886	22,447,372	23,488,406	23,499,635	24,547,548	25,770,819	25,263,542	24,725,468	25,141,296	26,840,001	28,279,106	28,881,619	29,720,118	29,449,279
N	6,478,159	6,139,818	5,987,804	6,010,791	6,143,842	6,584,601	7,050,619	6,849,499	6,488,112	6,354,659	999'509'9	6,852,493	6,958,263	7,177,628	7,020,160
Ħ	1,029,803	653,905	761,593	857,675	854,897	877,485	883,328	800,891	795,581	747,218	800,918	798,729	804,210	798,181	737,893
=	6,508,749	4,888,195	5,722,164	6,249,643	6,015,337	6,070,715	6,129,321	5,634,005	5,378,261	5,064,015	5,219,439	5,171,862	5,122,639	4,939,436	4,510,612
_	32,495,522	27,530,110	30,966,070	30,685,414	30,828,926	32,772,517	34,290,092	36,206,779	36,778,057	37,303,521	39,298,559	40,632,102	41,211,927	43,586,142	43,361,541
Año	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2002	2006	2007	2008

* I: productos alimenticios, bebidas y tabaco; II: textiles, prendas de vestir e industrias del cuero; III: industrias de la madera y productos de la madera; IV: imprentas, papel y editoriales; V: sustancias químicas, derivados del petróleo, productos de caucho y plástico; VI: productos de minerales no metálicos, excepto derivados de petróleo y carbón; VII: industrias metálicas básicas; VIII: productos metálicos, maquinaria y equipo y IX: otras industrias manufactureras.

Fuente: Encuesta Industrial Mensual del INEGI.

1.13 Personal ocupado por rama manufacturera en México

	XI	9,615	8,334	8,886	9,973	10,349	9,729	9,827	9,652	9)306	9,359	9,148	8,881	9,049	9,171	7,435
	VIII	356,201	308,063	331,112	370,705	403,754	407,533	422,223	393,206	358,282	331,864	321,890	320,645	332,865	336,268	325,315
OIL LICENS	VII	53,220	49,706	51,576	54,634	55,814	54,121	54,513	52,730	49,695	49,216	49,668	51,250	52,076	52,923	52,885
מכנמו כומ	VI	82,488	72,534	71,216	71,927	73,370	73,175	75,025	72,207	69,191	67,185	67,174	67,227	67,371	68,795	68,864
ייים ייים	^	234,976	217,315	222,586	233,127	239,448	240,327	241,310	231,907	222,500	214,491	208,228	204,624	204,449	205,889	203,438
ac por ra	IV	90,643	84,770	83,589	85,971	87,077	88,285	89,793	88,849	87,258	85,159	84,058	83,887	83,648	84,442	84,105
duo o em	Ħ	29,644	25,432	26,143	27,543	28,270	27,035	26,585	24,220	22,915	21,545	21,065	20,929	20,877	20,581	19,867
the second on both and the second on the second of the sec	П	183,727	166,278	177,199	187,702	191,362	192,500	194,746	177,048	162,899	150,487	139,570	133,698	129,549	125,648	117,064
1	-	353,371	340,626	341,760	346,172	354,983	364,141	364,254	363,462	360,643	361,221	352,414	352,731	359,913	360,512	359,152
	Año	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2002	2006	2007	2008

* I: productos alimenticios, bebidas y tabaco; II: textiles, prendas de vestir e industrias del cuero; III: micas, derivados del petróleo, productos de caucho y plástico; VI: productos de minerales no metálicos, industrias de la madera y productos de la madera; IV: imprentas, papel y editoriales; V: sustancias quíexcepto derivados de petróleo y carbón; VII: industrias metálicas básicas; VIII: productos metálicos, maquinaria y equipo y IX: otras industrias manufactureras.

Fuente: Encuesta Industrial Mensual del INEGI.

1.14 Valor de la producción manufacturera por estado, 1994-1998. Miles de pesos (2003=100)

Entidad	1994	1995	1996	1997	1998
Aguascalientes	2,269,978	2,346,585	2,620,548	2,672,003	2,256,971
Baja California	1,585,598	1,202,461	1,591,387	1,763,174	1,966,542
Coahuila	6,526,138	7,834,343	10,056,196	10,235,975	10,486,993
Chihuahua	1,316,836	1,388,961	1,660,574	1,604,607	1,595,844
Distrito Federal	20,968,230	16,877,383	17,675,153	18,405,159	18,505,681
Durango	1,313,497	1,103,965	1,178,233	1,250,824	1,256,214
Guanajuato	3,508,840	3,690,662	6,522,048	7,054,862	7,767,608
Jalisco	9,096,495	8,268,575	10,353,869	12,012,073	12,575,452
México	23,425,694	19,103,506	22,698,722	24,080,827	24,054,484
Morelos	2,320,711	1,294,420	1,435,032	1,626,302	1,871,953
Nuevo León	11,424,323	10,563,703	12,138,797	12,865,812	12,814,269
Puebla	6,353,907	5,985,035	6,887,020	7,301,655	8,244,156
Querétaro	3,490,638	3,495,950	4,079,816	4,444,560	4,706,943
San Luis Potosí	3,369,678	3,124,637	3,530,049	3,659,581	3,518,061
Sinaloa	1,061,678	810,033	952,564	988,041	938,568
Sonora	3,491,327	3,372,554	3,390,342	3,802,567	3,530,197
Tlaxcala	1,318,697	1,120,197	1,323,312	1,493,400	1,540,305
Veracruz	4,735,320	5,415,389	6,070,818	5,881,555	5,128,033
Yucatán	931,286	769,319	867,188	738,444	772,360

1.15 Valor de la producción manufacturera por estado, 1999-2003 Miles de pesos (2003=100)

Entidad	1999	2000	2001	2002	2003
Aguascalientes	2,437,746	3,391,014	3,641,064	3,002,289	2,762,053
Baja California	1,950,110	1,967,157	1,890,119	1,924,172	2,014,042
Coahuila	10,406,547	10,682,404	10,127,853	11,194,357	12,243,477
Chihuahua	1,800,716	1,956,420	1,899,620	1,791,756	1,875,930
Distrito Federal	19,497,731	19,964,243	20,112,867	19,880,357	18,142,939
Durango	1,264,533	1,221,703	1,267,089	1,315,536	1,331,154
Guanajuato	7,950,300	9,159,152	9,173,715	9,286,961	9,039,968
Jalisco	12,983,554	14,024,071	13,357,977	12,804,611	11,763,549
México	25,085,989	27,196,020	26,461,734	24,745,966	23,768,986
Morelos	1,896,889	2,229,420	2,154,158	2,104,950	2,077,423
Nuevo León	12,797,461	13,572,749	13,195,464	13,486,477	14,199,424
Puebla	9,542,394	10,212,635	9,703,453	9,170,765	9,271,321
Querétaro	4,968,956	5,245,199	5,182,294	4,817,666	4,969,200
San Luis Potosí	3,540,282	3,546,436	3,290,918	3,176,260	3,356,407
Sinaloa	981,544	1,009,714	1,060,766	1,063,219	1,188,978
Sonora	3,419,255	3,837,792	3,765,416	3,324,985	2,645,713
Tlaxcala	1,617,418	1,794,186	1,828,848	1,718,696	1,585,841
Veracruz	4,657,201	5,043,577	5,140,989	4,977,291	5,190,171
Yucatán	880,017	921,312	949,742	888,389	894,223

1.16 Valor de la producción manufacturera por estado, 2004-2008 Miles de pesos (2003=100)

Entidad	2004	2005	2006	2007	2008
Aguascalientes	3,087,738	3,263,203	3,950,776	5,210,820	4,732,709
Baja California	2,264,123	2,465,932	3,191,142	3,320,039	3,495,149
Coahuila	13,833,082	13,898,518	15,081,278	16,529,864	16,004,564
Chihuahua	1,945,892	2,036,614	2,178,942	2,248,497	2,139,304
Distrito Federal	17,645,273	18,115,857	18,571,776	18,514,802	18,103,387
Durango	1,528,015	1,632,164	1,685,825	1,728,681	1,790,626
Guanajuato	10,546,478	10,147,814	10,053,723	9,595,349	8,792,538
Jalisco	11,884,582	10,684,284	11,036,577	11,368,019	11,696,331
México	25,392,599	27,308,230	28,198,775	28,387,575	28,332,961
Morelos	1,965,219	2,040,773	2,024,085	2,616,287	2,237,769
Nuevo León	16,950,904	17,229,762	18,369,321	18,578,337	18,612,822
Puebla	8,525,787	9,855,842	9,720,942	9,267,116	9,630,727
Querétaro	5,370,377	5,711,841	5,670,904	5,990,838	6,078,950
San Luis Potosí	4,321,832	4,412,417	4,942,200	5,403,979	5,565,028
Sinaloa	1,293,761	1,331,091	1,314,956	1,343,394	1,320,460
Sonora	2,969,785	3,697,737	6,377,412	6,317,196	5,773,661
Tlaxcala	1,895,005	1,689,821	1,813,283	1,712,727	1,735,502
Veracruz	6,104,910	6,579,845	6,390,982	6,759,108	7,472,430
Yucatán	925,909	868,755	891,172	999,757	1,031,764

1.17 Personal ocupado manufacturero por estado, 1994-1998

Entidad	1994	1995	1996	1997	1998
Aguascalientes	25,051	23,712	25,192	26,561	28,008
Baja California	18,701	16,525	17,365	18,301	18,391
Coahuila	56,420	54,806	57,882	61,002	64,660
Chihuahua	19,888	18,049	18,413	18,854	19,248
Distrito Federal	284,513	251,061	247,978	253,653	254,666
Durango	15,576	15,024	15,321	16,262	15,656
Guanajuato	59,281	57,882	63,221	65,900	70,244
Jalisco	102,072	95,447	98,354	105,455	112,549
México	284,094	250,147	260,087	279,144	293,921
Morelos	20,428	18,071	17,529	18,286	19,618
Nuevo León	154,991	142,553	151,065	160,141	170,056
Puebla	65,724	60,546	63,848	71,179	75,799
Querétaro	35,444	32,746	37,007	42,530	46,336
San Luis Potosí	34,047	31,116	32,140	33,895	34,789
Sinaloa	17,052	16,310	16,487	17,351	16,923
Sonora	20,316	19,913	19,859	19,580	20,516
Tlaxcala	21,301	19,866	22,556	24,429	25,684
Veracruz	48,402	44,980	46,167	47,500	46,660
Yucatán	13,591	12,140	11,933	12,343	12,942

1.18 Personal ocupado manufacturero por estado, 1999-2003

Entidad	1999	2000	2001	2002	2003
Aguascalientes	27,263	30,133	29,661	25,715	24,269
Baja California	17,905	17,663	16,423	15,966	16,161
Coahuila	65,191	66,867	59,939	56,249	52,194
Chihuahua	19,758	20,211	19,197	18,157	18,625
Distrito Federal	248,908	246,336	236,045	223,514	213,116
Durango	15,533	15,308	14,558	13,735	14,087
Guanajuato	72,867	74,856	71,898	70,551	68,135
Jalisco	117,158	120,390	113,753	106,398	103,744
México	293,717	300,317	285,685	270,055	260,003
Morelos	19,364	20,101	18,630	16,168	15,537
Nuevo León	173,274	174,601	170,011	165,160	158,978
Puebla	76,127	77,386	72,604	68,075	65,585
Querétaro	49,973	52,297	48,812	47,044	45,204
San Luis Potosí	35,581	36,729	35,381	33,978	32,599
Sinaloa	16,953	17,107	16,942	17,038	16,924
Sonora	21,229	21,348	20,913	21,082	20,649
Tlaxcala	25,489	25,493	24,191	22,443	19,136
Veracruz	45,101	44,437	43,175	43,001	40,768
Yucatán	13,552	13,914	13,732	12,970	12,888

1.19 Personal ocupado manufacturero por estado, 2004-2008

Entidad	2004	2005	2006	2007	2008
Aguascalientes	23,306	23,232	25,367	27,245	26,590
Baja California	16,687	17,037	17,810	18,401	17,802
Coahuila	52,066	53,065	54,238	52,886	51,703
Chihuahua	18,518	18,588	19,289	19,842	19,796
Distrito Federal	201,569	196,961	196,568	187,665	181,204
Durango	14,456	14,317	14,617	15,020	14,682
Guanajuato	66,762	69,177	70,673	72,218	70,583
Jalisco	103,755	96,812	100,702	102,507	101,056
México	254,965	251,389	250,662	255,170	254,083
Morelos	14,913	14,518	13,662	16,014	13,950
Nuevo León	154,974	156,563	159,786	159,235	158,061
Puebla	60,362	60,896	60,610	59,838	59,015
Querétaro	44,755	43,365	43,623	43,710	44,760
San Luis Potosí	32,744	33,928	34,863	36,562	35,518
Sinaloa	17,399	17,401	17,694	17,405	17,528
Sonora	20,004	21,318	22,793	22,309	21,930
Tlaxcala	16,828	16,190	16,292	15,793	15,441
Veracruz	37,701	39,818	40,367	40,191	38,770
Yucatán	12,634	12,730	13,344	13,495	13,507

• Datos para la estimación de la tercera ley de Kaldor

1.20 Población económicamente activa por entidad y sector de actividad, 1980

Entidad	Total	Sector primario	Secundario	Terciario	NE*
Aguascalientes	158,872	28,615	34,675	47,114	48,468
Baja California	400,837	38,180	81,648	148,090	132,919
Baja California Sur	69,597	13,538	10,986	25,058	20,015
Campeche	133,697	42,836	19,153	35,282	36,426
Coahuila	480,161	76,343	111,027	148,550	144,241
Colima	108,301	30,291	16,857	34,446	26,707
Chiapas	732,475	421,561	46,010	96,335	168,569
Chihuahua	659,056	137,909	131,570	194,625	194,952
Distrito Federal	2,293,615	202,336	1,135,296	557,539	398,444
Durango	354,573	110,311	48,105	81,199	114,958
Guanajuato	971,602	187,495	214,839	140,611	428,657
Guerrero	715,027	318,424	60,078	166,924	169,601
Hidalgo	502,488	187,043	65,041	93,877	156,527
Jalisco	1,406,816	267,824	313,887	417,464	407,641
México	2,395,516	367,888	657,419	727,785	642,424
Michoacán	866,969	344,325	110,523	178,059	234,062
Morelos	301,733	76,303	52,264	87,124	86,042
Nayarit	209,181	84,819	28,322	53,556	42,484
Nuevo León	797,400	67,308	261,822	283,380	184,890
Oaxaca	855,240	474,793	60,899	115,786	203,762
Puebla	1,077,429	447,439	163,965	229,376	236,649
Querétaro	223,232	65,035	57,380	55,736	45,081
Quintana Roo	79,030	23,136	9,451	27,122	19,321
San Luis Potosí	529,168	181,346	78,720	121,730	147,372
Sinaloa	564,036	156,542	72,871	152,073	182,550
Sonora	480,692	100,765	81,559	150,234	148,134
Tabasco	326,250	127,459	43,724	63,483	91,584
Tamaulipas	620,395	112,362	125,753	207,190	175,090
Tlaxcala	174,006	65,906	33,520	32,699	41,881

Entidad	Total	Sector primario	Secundario	Terciario	NE*
Veracruz	1,789,178	678,029	238,224	395,218	477,707
Yucatán	366,255	115,336	59,439	100,921	90,559
Zacatecas	298,977	148,474	39,493	56,689	54,321

^{*} NE: No especificado

Fuente: X Censo de Población y Vivienda del INEGI.

1.21 Población ocupada por entidad y sector de actividad, 1990

Entidad	Total	Sector primario	Secundario	Terciario	NE*
Aguascalientes	212,365	31,766	72,662	103,866	4,071
Baja California	565,471	58,584	179,527	305,382	21,978
Baja California Sur	102,763	18,820	19,318	61,118	3,507
Campeche	149,983	51,439	29,154	63,362	6,028
Coahuila	854,159	498,320	95,039	234,273	26,527
Colima	773,100	131,610	277,662	334,376	29,452
Chiapas	586,165	71,137	220,744	277,037	17,247
Chihuahua	133,474	32,011	28,547	68,923	3,993
Distrito Federal	2,884,807	19,145	778,444	1,971,646	115,572
Durango	347,275	99,205	92,246	146,379	9,445
Guanajuato	1,030,160	236,713	360,362	398,590	34,495
Guerrero	611,755	222,670	103,128	260,760	25,197
Hidalgo	493,315	182,684	124,505	167,712	18,414
Jalisco	1,553,202	234,016	508,679	757,453	53,054
México	2,860,976	248,140	1,053,808	1,456,246	102,782
Michoacán	891,873	303,224	206,491	333,788	48,370
Morelos	348,357	70,887	97,175	172,143	8,152
Nayarit	233,000	89,081	41,086	93,131	9,702
Nuevo León	1,009,584	61,835	405,771	509,469	32,509
Oaxaca	754,305	398,848	123,805	213,819	17,833
Puebla	1,084,316	400,369	269,963	381,055	32,929
Querétaro	288,994	51,771	107,762	120,738	8,723
Quintana Roo	163,190	32,013	25,347	95,939	9,891
San Luis Potosí	529,016	164,682	137,601	209,182	17,551
					Continúa

Entidad	Total	Sector primario	Secundario	Terciario	NE*
Sinaloa	660,905	242,710	113,496	280,139	24,560
Sonora	562,386	127,900	142,908	275,821	15,757
Tabasco	393,434	140,093	80,680	155,584	17,077
Tamaulipas	684,550	111,400	208,863	342,425	21,862
Tlaxcala	196,609	56,150	66,662	70,109	3,688
Veracruz	1,742,129	685,647	368,639	641,828	46,015
Yucatán	407,337	110,057	99,896	189,334	8,050
Zacatecas	294,458	117,187	63,254	104,576	9,441

^{*} NE: No especificado

Fuente: XI Censo de Población y Vivienda del INEGI.

1.22 Población ocupada por entidad y sector de actividad, 2000

Entidad	Total	Sector primario	Secundario	Terciario	NE*
Aguascalientes	331,083	24,392	116,936	181,334	8,421
Baja California	906,369	57,558	331,799	469,249	47,763
Baja California Sur	169,014	20,138	34,277	109,499	5,100
Campeche	243,323	60,737	52,117	125,829	4,640
Coahuila	822,686	43,598	348,662	405,381	25,045
Colima	199,692	33,898	40,315	120,940	4,539
Chiapas	1,206,621	570,169	159,795	450,144	26,513
Chihuahua	1,117,747	99,139	470,732	508,167	39,709
Distrito Federal	3,582,781	20,600	757,856	2,688,297	116,028
Durango	443,611	66,610	138,140	226,412	12,449
Guanajuato	1,460,194	193,189	532,008	690,497	44,500
Guerrero	888,078	237,618	179,984	449,029	21,447
Hidalgo	728,726	183,852	209,332	321,091	14,451
Jalisco	2,362,396	236,926	753,159	1,298,921	73,390
México	4,462,361	232,448	1,391,402	2,657,045	181,466
Michoacán	1,226,606	290,721	304,818	598,751	32,316
Morelos	550,831	74,472	144,276	318,835	13,248
Nayarit	318,837	88,686	56,151	168,240	5,760
Nuevo León	1,477,687	48,426	556,088	818,203	54,970
Oaxaca	1,066,558	438,312	206,516	400,105	21,625
Puebla	1,665,521	464,879	478,217	689,442	32,983
Querétaro	479,980	41,479	177,274	244,521	16,706
Quintana Roo	348,750	36,562	56,455	247,980	7,753
San Luis Potosí	715,731	152,565	193,590	348,700	20,876
Sinaloa	880,295	247,395	149,169	451,895	31,836
Sonora	810,424	128,736	238,225	415,558	27,905
Tabasco	600,310	167,315	111,193	307,708	14,094
Tamaulipas	1,013,220	92,907	344,238	542,877	33,198
Tlaxcala	328,585	59,822	124,355	137,726	6,682
Veracruz	2,350,117	745,854	458,283	1,098,898	47,082
Yucatán	618,448	106,170	174,285	328,971	9,022
Zacatecas	353,628	73,126	94,462	174,978	11,062

^{*} NE: No especificado

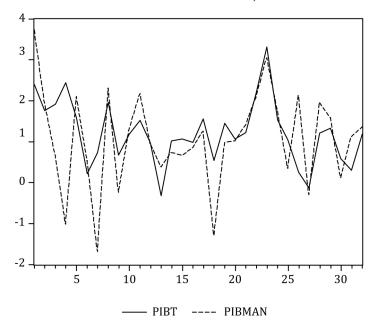
Fuente: XII Censo de Población y Vivienda del INEGI.

1.23 Población ocupada por entidad y sector de actividad, 2006

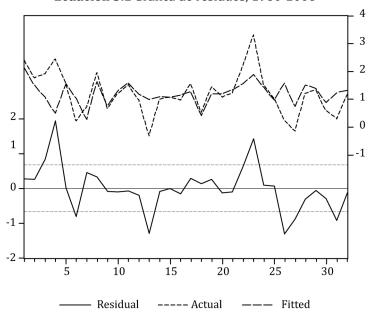
Entidad	Total	Sector primario	Secundario	Terciario	NE*
Aguascalientes	427,281	31,479	150,912	234,022	10,868
Baja California	1,226,081	27,134	156,417	221,214	22,516
Baja California Sur	236,409	50,910	86,655	276,822	12,893
Campeche	328,907	106,656	91,519	220,959	8,148
Coahuila	1,040,899	22,644	181,086	210,544	13,008
Colima	259,517	72,532	86,262	258,775	9,712
Chiapas	1,537,440	201,905	56,586	159,402	9,389
Chihuahua	1,337,332	37,898	179,947	194,257	15,180
Distrito Federal	3,970,669	2,457	90,382	320,605	13,837
Durango	561,897	64,158	133,055	218,077	11,991
Guanajuato	1,907,843	56,531	155,676	202,053	13,022
Guerrero	1,193,313	114,325	86,596	216,041	10,319
Hidalgo	884,317	107,800	122,740	188,268	8,473
Jalisco	2,889,481	42,852	136,222	234,933	13,274
México	5,838,312	22,257	133,230	254,418	17,376
Michoacán	1,592,477	101,271	106,182	208,571	11,257
Morelos	677,389	57,768	111,915	247,321	10,277
Nayarit	411,791	118,850	75,249	225,462	7,719
Nuevo León	1,895,444	14,003	160,796	236,588	15,895
Oaxaca	1,403,705	175,595	82,734	160,289	8,663
Puebla	2,242,909	119,262	122,684	176,873	8,462
Querétaro	642,762	36,925	157,810	217,674	14,872
Quintana Roo	567,913	44,795	69,167	303,820	9,499
San Luis Potosí	974,174	91,079	115,570	208,169	12,463
Sinaloa	1,102,122	120,082	72,404	219,343	15,453
Sonora	972,346	67,874	125,600	219,095	14,712
Tabasco	746,047	119,089	79,144	219,016	10,032
Tamaulipas	1,306,313	39,179	145,167	228,935	14,000
Tlaxcala	436,278	77,791	161,707	179,094	8,689
Veracruz	2,832,820	135,606	83,322	199,794	8,560
Yucatán	834,521	73,352	120,412	227,284	6,233
Zacatecas	567,432	88,357	114,136	211,422	13,366

^{*} NE: No especificado

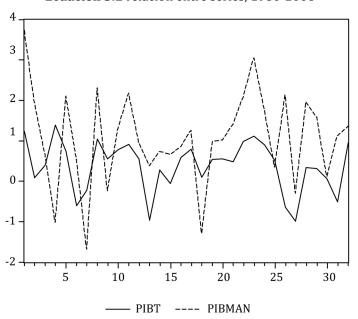
 $\label{eq:Fuente:estimaciones de la Encuesta} Fuente: estimaciones de la Encuesta Nacional de Ocupación y Empleo del INEGI para el <math>4^{\circ}$ trimestre.

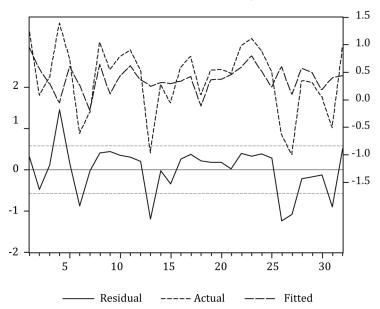

ANEXO 2

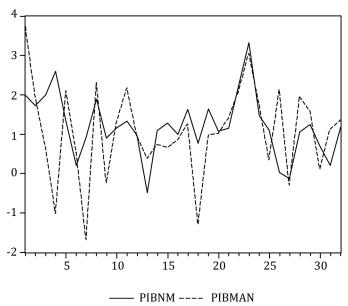
Estimaciones econométricas

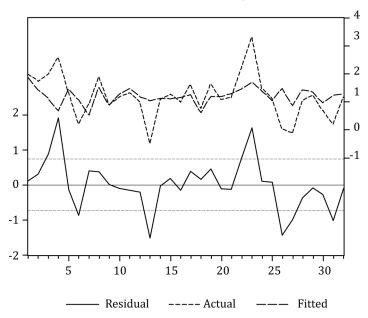

• Primera ley de Kaldor

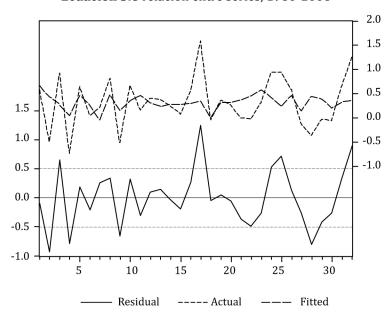
Sección cruzada

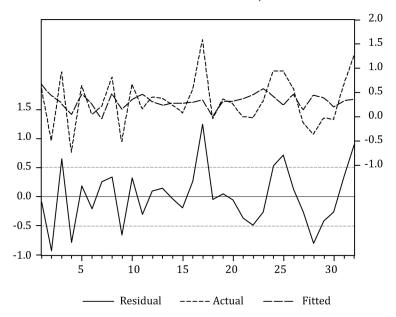

Ecuación 3.1 relación entre series, 1980-2006

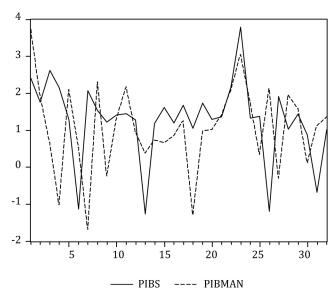

Ecuación 3.1 Gráfica de residuos, 1980-2006

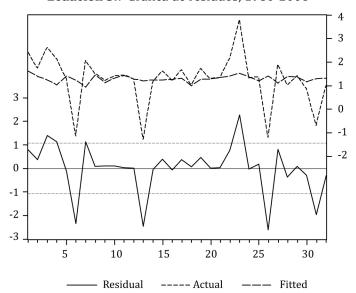

Ecuación 3.2 relación entre series, 1980-2006

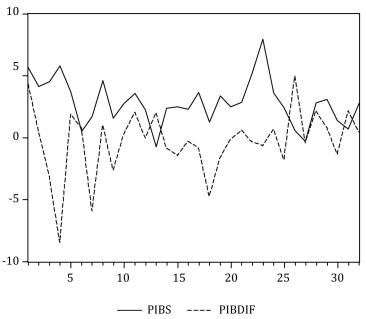

Ecuación 3.2 Gráfica de residuos, 1980-2006

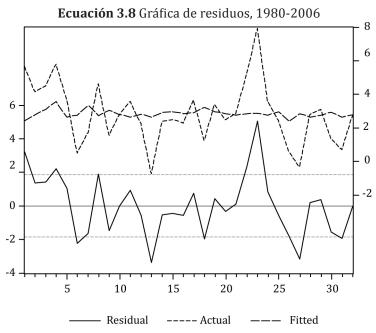

Ecuación 3.5 relación entre series, 1980-2006

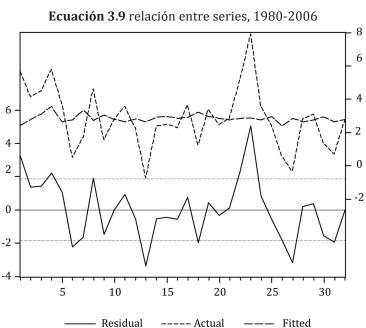

Ecuación 3.5 Gráfica de residuos, 1980-2006

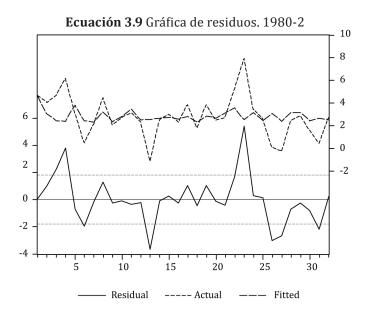

Ecuación 3.6 relación entre series, 1980-2006


Ecuación 3.6 Gráfica de residuos, 1980-2006


Ecuación 3.7 relación entre series, 1980-2006




Ecuación 3.7 Gráfica de residuos, 1980-2006



Ecuación 3.8 relación entre series, 1980-2006

Cuadro 2.1 Primera ley de Kaldor: Mínimos Cuadrados Ordinarios, 1980-1988

				Ecuació	1		
	(3.1)	(3.2)	(3.5)	(3.6)	(3.7)	(3.8)	(3.9)
Variables independientes\Dependientes.	$q_{_T}$	$p_{_{PC}}$	$q_{_{NM}}$	$q_{\scriptscriptstyle A}$	q_s	$q_{\scriptscriptstyle T}$	$\boldsymbol{q}_{\text{NM}}$
Constante	1.297* (4.06)	.224 (.46)	1.45* (3.26)	.029 (.889)	1.56* (5.03)	3.30* (4.49)	3.28* (3.27)
$q_{_{M}}$	0.248 (1.83)	.178 (.17)	.162 (.870)	.093 (1.00)	.182 (1.06)	-	-
$q_{_{M}}$ - $q_{_{NM}}$	-	-	-	-	-	297 (-1.76)	-
QM/QTE*q _M	-	-	-	-	-	-	1.10 (.08)
n (entidades federa- tivas)	32	32	32	32	32	32	32
R ² ajustado	.07	.02	.007	.004	.006	.16	.01
F estadístico	3.35	1.90	1.24	1.14	1.20	6.90	1.43
D.W.	1.64	1.81	1.63	1.78	2.33	1.63	1.72
Prueba JB normalidad ⁺	74.34 (.000)	51.48 (.000)	47.40 (.000)	.9838 (.611)	15.18 (.000)	3.22 (.199)	55.43 (.000)
Prueba White Hetero- cedasticidad	1.58 (.222)	1.57 (.224)	1.46 (.247)	.139 (.870)	.195 (.823)	5.75 (.007)	.414 (.664)
Prueba Ramsey forma funcional	2.26 (.122)	1.63 (.210)	4.37 (.045)	.444 (.510)	2.29 (.100)	5.28 (.011)	.013 (.907)

^{*} Coeficiente estadísticamente significativo al 5%

⁺ Probabilidad entre paréntesis, la hipótesis nula es que se tiene normalidad, homocedasticidad y buena forma funcional.

Cuadro 2.2 Primera ley de Kaldor: Mínimos Cuadrados Ordinarios, 1988-1994

				Ecuación	ı		
	(3.1)	(3.2)	(3.5)	(3.6)	(3.7)	(3.8)	(3.9)
Variables independientes\Dependientes.	$q_{\scriptscriptstyle T}$	$p_{_{PC}}$	$\boldsymbol{q}_{\scriptscriptstyle NM}$	$q_{\scriptscriptstyle A}$	q_s	$q_{\scriptscriptstyle T}$	$\boldsymbol{q}_{\scriptscriptstyle NM}$
Constante	.360 (.066)	394* (-2.15)	.386 (1.87)	427* (-2.04)	1.26* (3.39)	1.50* (3.96)	1.00 (.119)
$\mathbf{q}_{_{\mathrm{M}}}$.301* (2.38)	.215 (1.75)	.193 (1.39)	034 (213)	353 (-1.32)	-	-
$q_{_{\mathrm{M}}}$ - $q_{_{\mathrm{NM}}}$	-	-	-	-	-	452* (-2.86)	-
QM/QTE*q _M	-	-	-	-	-	-	.730 (.894)
n (entidades federa- tivas)	32	32	32	32	32	32	32
R ² ajustado	.05	.02	.03	.00	.01	.32	.013
F estadístico	2.86	1.73	.97	.02	1.40	16.12	.414
D.W.	1.62	1.85	1.58	1.41	1.87	1.96	1.63
Prueba JB normalidad ⁺	29.33 (.000)	4.32 (.114)	18.78 (.000)	3.47 (.176)	10.24 (.005)	1.45 (.48)	29.72 (.000)
Prueba White Heteroce- dasticidad	.009 (.990)	.086 (.917)	.016 (.983)	.382 (.685)	.096 (.908)	2.68 (.085)	.218 (.805)
Prueba Ramsey forma funcional	.023 (.880)	.338 (.565)	.0014 (.969)	.005 (.942)	.368 (.548)	2.67 (.112)	.358 (.553)

^{*} Coeficiente estadísticamente significativo al 5%

⁺ Probabilidad entre paréntesis, la hipótesis nula es que se tiene normalidad, homocedasticidad y buena forma funcional.

Cuadro 2.3 Primera ley de Kaldor: Mínimos Cuadrados Ordinarios, 1994-2000

				Ecuación			
	(3.1)	(3.2)	(3.5)	(3.6)	(3.7)	(3.8)	(3.9)
Variables independientes\Dependientes.	$q_{\scriptscriptstyle T}$	$p_{_{PC}}$	$q_{_{NM}}$	$q_{\mathtt{A}}$	$\boldsymbol{q}_{\mathrm{S}}$	$q_{_T}$	$q_{_{NM}}$
Constante	.676* (4.74)	.134 (1.15)	.779* (5.86)	.906* (3.06)	.823* (5.45)	2.76* (10.64)	2.22* (9.34)
$\mathbf{q}_{_{\mathrm{M}}}$.374* (6.38)	.288* (5.51)	.231* (4.22)	149 (-1.24)	.091 (1.81)	-	-
$q_{_{\mathrm{M}}}$ - $q_{_{\mathrm{NM}}}$	-	-	-	-	-	.332* (4.11)	-
QM/QTE*q _M	-	-	-	-	-	-	.666* (4.38)
n (entidades federa- tivas)	32	32	32	32	32	32	32
R ² ajustado	.64	.51	.40	.03	.05	.33	.34
F estadístico	58.34	34.23	22.04	1.11	2.69	16.44	17.49
D.W.	1.41	1.65	1.38	1.34	1.92	1.49	1.63
Prueba JB normalidad ⁺	.66 (.717)	26.61 (.000)	.409 (.815)	1.87 (.391)	9.13 (.010)	1.19 (.550)	1.12 (.570)
Prueba White Hetero- cedasticidad	1.86 (.172)	.159 (.853)	.430 (.654)	.431 (.653)	.672 (.518)	.115 (.891)	.061 (.940)
Prueba Ramsey forma funcional	2.55 (.120)	.005 (.941)	.800 (.378)	.262 (.612)	2.18 (.150)	.718 (.403)	.541 (.467)

^{*} Coeficiente estadísticamente significativo al 5%

⁺ Probabilidad entre paréntesis, la hipótesis nula es que se tiene normalidad, homocedasticidad y buena forma funcional.

Cuadro 2.4 Primera ley de Kaldor: Mínimos Cuadrados Ordinarios, 2000-2006

				Ecuación	ı		
	(3.1)	(3.2)	(3.5)	(3.6)	(3.7)	(3.8)	(3.9)
Variables indepen- dientes\Depen- dientes.	$q_{_T}$	P _{PC}	$q_{_{NM}}$	$q_{_{A}}$	q_s	$q_{_T}$	$q_{_{\mathrm{NM}}}$
Constante	1.01* (16.41)	.563* (7.87)	1.18* (18.92)	.892* (6.01)	1.03* (13.62)	2.87* (11.31)	2.77* (15.67)
$q_{_{M}}$.282* (4.12)	.106 (1.46)	.188* (2.94)	.400* (2.76)	.283* (2.59)	-	-
$q_{_{\mathrm{M}}}$ - $q_{_{\mathrm{NM}}}$	-	-	-	-	-	.103 (1.28)	-
QM/QTE*q _M	-	-	-	-	-	-	.8511 (3.13)
n (entidades fede- rativas)	32	32	32	32	32	32	32
R ² ajustado	.36	.02	.14	.12	.17	.04	.11
F estadístico	18.55	1.94	6.21	5.23	7.57	1.26	4.92
D.W.	1.72	1.86	1.91	2.17	1.54	1.88	1.84
Prueba JB norma- lidad*	.915 (.632)	.170 (.918)	1.60 (.447)	.590 (.744)	1.95 (.376)	.723 (.696)	.610 (.737)
Prueba White Hete- rocedasticidad	.357 (.702)	.082 (.920)	.979 (.387)	.952 (.397)	3.15 (.057)	.926 (.407)	1.09 (.346)
Prueba Ramsey forma funcional	1.34 (.255)	.020 (.886)	.017 (.896)	.546 (.465)	2.96 (.095)	1.16 (.288)	2.07 (.160)

- * Coeficiente estadísticamente significativo al 5%
- + Probabilidad entre paréntesis, la hipótesis nula es que se tiene normalidad, homocedasticidad y buena forma funcional.

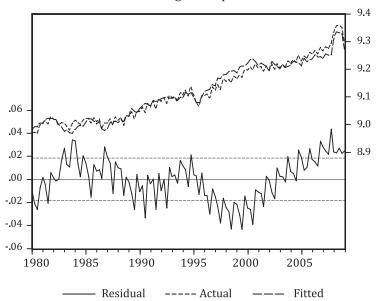
Series de tiempo

Cuadro 2.5 Prueba de raíces unitarias para el PIB total de México 1980.1-2009.1

Hipótesis nula:	Log del PIB total tiene raíz unitaria		
Exógenas:	Intercepto y tendencia		
Rezagos:	9 con 12 como máximo, CIA		
		Estadístico t	Probabilidad
Test estadístico Dickey- Fuller Aumentado		-2.65	0.259
Valores críticos:	Nivel 1%	-4.04	
	Nivel 5%	-3.45	
	Nivel 10%	-3.15	
Hipótesis nula:	Log del PIB total tiene raíz unitaria		
Exógenas:	Intercepto		
Rezagos:	9 con 12 como máximo, CIA		
		Estadístico t	Probabilidad
Test estadístico Dickey- Fuller Aumentado		1.28	0.998
Valores críticos:	Nivel 1%	-3.49	
	Nivel 5%	-2.88	
	Nivel 10%	-2.58	
Hipótesis nula:	D (log PIB total) tiene raíz unitaria		
Exógenas:	Intercepto		
Rezagos:	8 con 12 como máximo, CIA		
		Estadístico t	Probabilidad
Test estadístico Dickey- Fuller Aumentado		-4.14	0.0013
Valores críticos:	Nivel 1%	-3.49	
	Nivel 5%	-2.88	
	Nivel 10%	-2.58	

Cuadro 2.6 Prueba de raíces unitarias para el PIB manufacturero de México 1980.1-2009.1

Hipótesis nula:	Log del PIB man tiene raíz unitaria		
Exógenas:	Intercepto y tendencia		
Rezagos:	12 con 12 como máximo, CIA		
		Estadístico t	Probabilidad
Test estadístico Dickey- Fuller Aumentado		-3.13	0.104
Valores críticos:	Nivel 1%	-4.04	
	Nivel 5%	-3.45	
	Nivel 10%	-3.15	
Hipótesis nula:	Log del PIB man tiene raíz unitaria		
Exógenas:	Intercepto		
Rezagos:	9 con 12 como máximo, CIA		
		Estadístico t	Probabilidad
Test estadístico Dickey- Fuller Aumentado		0.15	0.968
Valores críticos:	Nivel 1%	-3.49	
	Nivel 5%	-2.88	
	Nivel 10%	-2.58	
Hipótesis nula:	D (log PIB man) tiene raíz unitaria		
Exógenas:	Intercepto		
Rezagos:	12 con 12 como máximo, CIA		
		Estadístico t	Probabilidad
Test estadístico Dickey- Fuller Aumentado		-3.46	0.011
Valores críticos:	Nivel 1%	-3.49	
	Nivel 5%	-2.88	
	Nivel 10%	-2.58	


Cuadro 2.7 Ecuación de cointegración

Variable dependiente:	Log PIB total			
Método:	Mínimos Cuadrados Ordinarios			
Muestra:	1980.1-2009-1			
Observacio- nes:	117			
Variable	Coeficiente	Error estándar	Estadístico t	Probabilidad
С	0.8556	0.0146	58.55	0.0000
Log PIB manufacturero	1.9562	0.1223	15.98	0.0000
R² ajustada	.96	F estadístico	3428.107	

Cuadro 2.8 Prueba de cointegración DFA

Hipótesis nula:	Residuos con raíz unitaria		
Exógenas:	Ninguna		
Rezagos:	12		
		Estadístico t	Probabilidad
Test estadístico Dickey- Fuller Aumentado		-2.300219	0.0214
Valores críticos:	Nivel 1%	-2.587387	
	Nivel 5%	-1.943943	
	Nivel 10%	-1.614694	

Gráfica 2.1 Bondad de ajuste de la ecuación de cointegración por el método de EG

Cuadro 2.9 Modelo de corrección del error

Variable dependiente:	D(PIB total)			
Método:	Mínimos Cuadrados Ordinarios			
Muestra:	1980.2-2009-1			
Observaciones:	116			
Variable	Coeficiente	Error estándar	Estadístico t	Probabilidad
С	0.000532	0.001350	0.394343	0.6941
D(PIB man)	0.751080	0.084486	8.889991	0.0000
Residuos (-1)	-0.352221	0.072156	-4.881400	0.0000
R² ajustada	.46	F estadístico	50.46	

Datos en panel

Cuadro 2.10 Modelo de efectos fijos de la ecuación 3.5

Variable dependiente: $q_{_{\it NM}}$
Método: Mínimos Cuadrados Agrupados
Número de secciones cruzadas: 32

Observaciones: 128

	U	bservaciones: 126		
Variable	Coeficiente	E. S	Est. t	Prob.
$q_{_M}$	0.101197	0.083301	1.214834	0.2274
AGSC	1.575993	0.595920	2.644641	0.0096
BCC	1.488509	0.541424	2.749249	0.0072
BCSC	1.925762	0.520747	3.698076	0.0004
CAMC	2.267126	0.521761	4.345138	0.0000
COAC	1.082498	0.545552	1.984224	0.0501
COLC	0.196008	0.518752	0.377845	0.7064
CHIAC	1.049863	0.530719	1.978191	0.0508
CHIC	1.628077	0.548395	2.968805	0.0038
DFC	0.874844	0.516390	1.694153	0.0935
DURC	1.004791	0.526493	1.908460	0.0594
GUAC	1.051100	0.547610	1.919430	0.0579
GUEC	0.800004	0.522745	1.530390	0.1292
HIDC	-0.425004	0.517258	-0.821648	0.4133
JALC	0.986784	0.519472	1.899592	0.0605
MEXC	1.186771	0.519245	2.285570	0.0245
MICC	0.880430	0.521357	1.688727	0.0946
MORC	1.433058	0.525115	2.729034	0.0076
NAYC	0.877521	0.526679	1.666142	0.0990
NLNC	1.495450	0.523357	2.857420	0.0052
OAXC	0.871494	0.523503	1.664736	0.0993
PUEC	0.967729	0.531173	1.821873	0.0716
QUEC	1.927266	0.543436	3.546447	0.0006
QUIC	2.906957	0.564797	5.146903	0.0000
SLPC	1.254381	0.534543	2.346640	0.0210
SINC	0.999775	0.517429	1.932197	0.0563
SONC	-0.082950	0.544586	-0.152318	0.8793

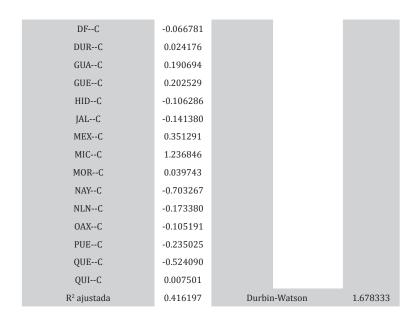
TABC	-0.000580	0.516687	-0.001122	0.9991
TAMC	0.862961	0.542530	1.590624	0.1150
TLAC	1.040248	0.530579	1.960591	0.0529
VERC	0.670817	0.516424	1.298965	0.1971
YUCC	0.183062	0.525803	0.348158	0.7285
ZACC	0.981577	0.527479	1.860882	0.0659
R² ajustada	0.183668	D.	W.	2.121349
Est. F	1.892936			
Prob(Est. F)	0.009362			

Cuadro 2.11 Modelo de efectos aleatorios de la ecuación 3.5

Variable dependiente: $q_{_{\mathrm{NM}}}$								
Método: Mínimos Cuadrados Generalizados (componentes de la varianza)								
Número de secciones cruzadas: 32								
	0	bservaciones: 128						
Variable	Coeficiente	E. S.	Est. t	Prob.				
С	0.996184	0.136428	7.301911	0.0000				
$q_{_{\mathrm{M}}}$	0.162203	0.065680	2.469596	0.0149				
Efectos alea- torios								
AGS—C	0.141067							
вс—с	0.145346							
BCS—C	0.342900							
CAM—C	0.517271							
COA—C	-0.016747							
COL—C	-0.326668							
CHIA—C	0.056126							
СНІ—С	0.193542							
DF—C	-0.043441							
DUR—C	-0.026212							
GUA—C	-0.030779							
GUE—C	-0.100027							
HID—C	-0.563572							
JAL—C	-0.020258							
MEX—C	0.058314							

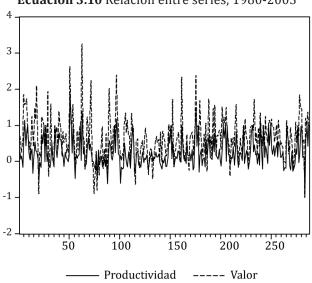
MIC—C	-0.066004		
MOR—C	0.142859		
NAY—C	-0.016436		
NLN—C	0.170074		
OAX—C	-0.073486		
PUE—C	-0.046844		
QUE—C	0.314566		
QUI—C	0.679648		
SLP—C	0.061048		
SIN—C	-0.008730		
SON—C	-0.470348		
тав—с	-0.382358		
там—с	-0.099620		
TLA—C	-0.017839		
VER—C	-0.131104		
YUC—C	-0.345622		
ZAC—C	-0.036665		
R² ajustada	0.259010	Durbin-Watson	1.586461

Cuadro 2.12 Modelo de efectos fijos de la ecuación 3.9

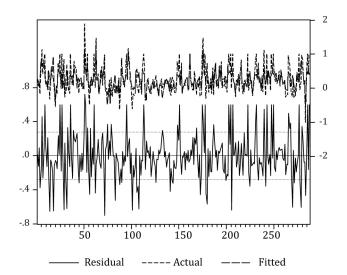

Variable dependiente: $q_{_{\it NM}}$							
Método: Mínimos Cuadrados Agrupados							
	Número	de secciones cruzad	las: 23				
		Observaciones: 92					
Variable	Coeficiente	E. S	Est. t	Prob.			
$Q_{\scriptscriptstyle M}\!/Q_{\scriptscriptstyle TE}q_{\scriptscriptstyle M}$	0.304106	0.129914	2.340816	0.0222			
AGS—C	1.219952	0.491957	2.479793	0.0156			
вс—с	1.403114	0.403364	3.478528	0.0009			
COA—C	0.780788	0.443422	1.760824	0.0828			
СНІ—С	1.537573	0.407625	3.772031	0.0003			
DF—C	0.866123	0.384731	2.251243	0.0276			
DUR—C	0.964731	0.391186	2.466173	0.0162			
GUA—C	0.884567	0.418999	2.111141	0.0384			
GUE—C	0.865478	0.385001	2.247990	0.0278			
JAL—C	0.947290	0.387580	2.444116	0.0171			

MEX—C	1.099867	0.390372	2.817482	0.0063
MOR—C	1.376998	0.391754	3.514958	0.0008
NLN—C	1.397659	0.394322	3.544462	0.0007
OAX—C	0.881210	0.386899	2.277623	0.0259
PUE—C	0.829580	0.404201	2.052393	0.0440
QUE—C	1.654168	0.435839	3.795365	0.0003
QUI—C	3.110829	0.386032	8.058473	0.0000
SLP—C	1.130426	0.404508	2.794566	0.0067
SON—C	-0.105420	0.397410	-0.265268	0.7916
там—с	0.776411	0.404085	1.921404	0.0589
TLA—C	0.889983	0.405400	2.195320	0.0316
VER—C	0.664959	0.384851	1.727832	0.0886
YUC—C	0.188115	0.387917	0.484936	0.6293
ZAC—C	1.068408	0.385195	2.773684	0.0071
R² ajustada	0.311983	D.	W.	1.887838
Est. F	2.794092			
Prob (Est. F)	0.000556			

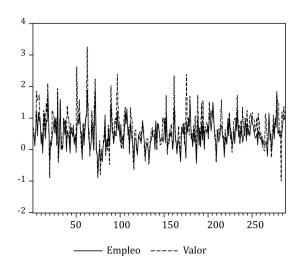
Cuadro 2.13 Modelo de efectos aleatorios de la ecuación 3.9

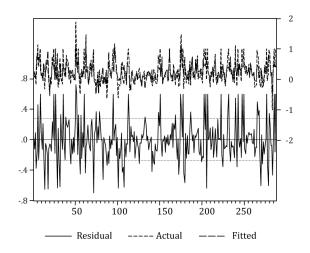

Variable dependiente: q_{NM}

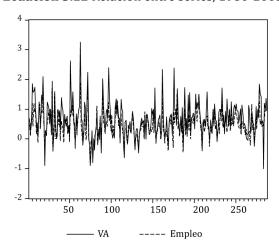
Método: Mínimos Cuadrados Generalizados (componentes de la varianza)									
Nú	Número de secciones cruzadas: 23								
	Observac	iones: 92							
Variable	Coeficiente	E. S.	Est. t	Prob.					
С	1.054416	0.152167	6.929316	0.0000					
$Q_{_{\mathrm{M}}}/Q_{_{\mathrm{TE}}}q_{_{\mathrm{M}}}$	0.314516	0.111730	2.814962	0.0060					
Efectos aleatorios									
AGSC	0.084891								
BCC	0.204138								
BCSC	-0.175420								
CAMC	0.284459								
COAC	-0.113231								
COLC	-0.057427								
CHIAC	-0.110294								
CHIC	-0.114493								
				Continúa					

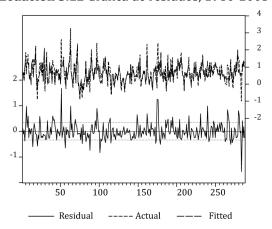


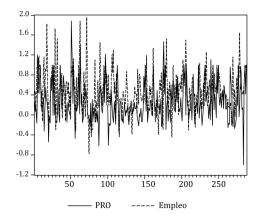
• Ley Verdoorn-Kaldor

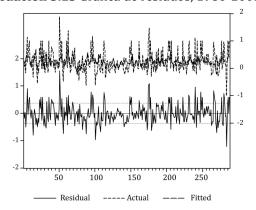

Sección cruzada Ecuación 3.10 Relación entre series, 1980-2003

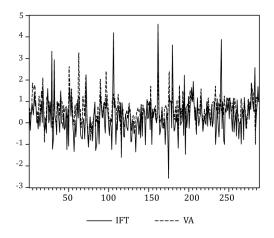

Ecuación 3.10 Gráfica de residuos, 1980-2003

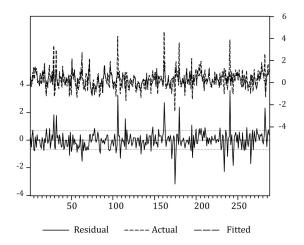

Ecuación 3.11 Relación entre series, 1980-2003

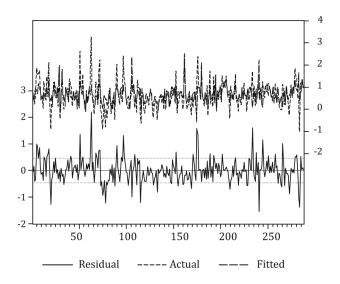

Ecuación 3.11 Gráfica de residuos, 1980-2003

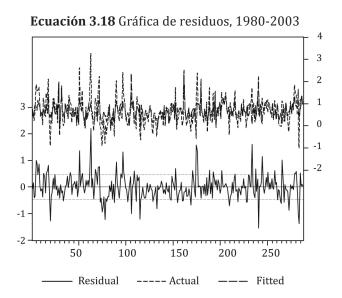

Ecuación 3.12 Relación entre series, 1980-2003


Ecuación 3.12 Gráfica de residuos, 1980-2003


Ecuación 3.13 Relación entre series, 1980-2003


Ecuación 3.13 Gráfica de residuos, 1980-2003


Ecuación 3.17 Relación entre series, 1980-2003



Ecuación 3.17 Gráfica de residuos, 1980-2003

Ecuación 3.18 Relación entre series, 1980-2003

Cuadro 2.14 Ley Verdoorn-Kaldor: Mínimos Cuadrados Ordinarios, 1980-1993

	Ecuación					
	(3.10)	(3.11)	(3.12)	(3.13)	(3.17)	(3.18)
Variables independientes\ Dependientes.	p	e _M	$q_{_{M}}$	p	ift	q _M
Constante	098* (-4.56)	.089* (3.39)	.123* (3.65)	.068 (1.84)	167* (-2.85)	.408* (14.82)
$\mathbf{q}_{_{\mathrm{M}}}$.544* (17.37)	.530* (11.92)	-	-	.812* (7.10)	-
$\mathbf{e}_{_{\mathrm{M}}}$	-	-	1.03* (13.20)	.282* (3.11)	-	-
ift	-	-	-	-	-	.340* (6.96)
n(entidades federativas y ramas manufactura)	288	288	288	288	288	288
R²ajustado	.51	.54	.53	.06	.27	.26

	Ecuación					
	(3.10)	(3.11)	(3.12)	(3.13)	(3.17)	(3.18)
F estadístico	302.00	344.90	337.58	21.53	108.85	105.71
D.W.	1.95	1.73	1.76	1.76	2.05	1.82
Prueba JB normalidad*	36.34 (.000)	67.84 (.000)	382.75 (.000)	109.74 (.000)	462.39 (.000)	376.98 (.000)
Prueba White Heterocedasticidad	7.31 (.000)	12.49 (.000)	5.09 (.006)	14.39 (.000)	6.32 (.002)	5.28 (.000)
Prueba Ramsey forma funcional	.036 (.849)	1.59 (.207)	1.35 (.245)	9.06 (.000)	2.48 (.116)	3.02 (.083)

- * Coeficiente estadísticamente significativo al 5%
- + Probabilidad entre paréntesis, la hipótesis nula es que se tiene normalidad, homocedasticidad y buena forma funcional.

Cuadro 2.15 Ley Verdoorn-Kaldor: Mínimos Cuadrados Ordinarios, 1993-2003

	Ecuación					
	(3.10)	(3.11)	(3.12)	(3.13)	(3.17)	(3.18)
Variables independientes\Dependientes.	p	$e_{_{M}}$	$q_{_{M}}$	p	ift	$q_{_{M}}$
Constante	015 (-1.33)	.040* (2.80)	.037* (2.16)	.042* (2.44)	109* (-2.97)	.160* (7.62)
$q_{_{M}}$.550* (13.08)	.589* (12.49)	-	-	.944* (9.52)	-
$e_{_{\mathrm{M}}}$	-	-	.981* (18.58)	.285* (4.10)	-	-
ift	-	-	-	-	-	.335* (8.11)
n(entidades federativas y ramas manufactura)	288	288	288	288	288	288
R ² ajustado	.57	.57	.57	.09	.31	.31
F estadístico	396.39	392.84	392.84	29.60	132.65	132.65
D.W.	1.97	1.88	1.83	1.93	2.12	1.78
Prueba JB normalidad+	11.15 (.003)	205.36 (.000)	460.91 (.000)	97.63 (.000)	181.95 (.000)	20.72 (.000)
Prueba White Heteroce- dasticidad	53.19 (.000)	24.77 (.000)	.736 (.479)	8.71 (.000)	2.66 (.071)	12.68 (.000)
Prueba Ramsey forma funcional	3.16 (.043)	1.29 (.256)	.238 (.625)	13.76 (.000)	3.32 (.069)	.032 (.856)

^{*} Coeficiente estadísticamente significativo al 5%

⁺ Probabilidad entre paréntesis, la hipótesis nula es que se tiene normalidad, homocedasticidad y buena forma funcional.

Datos en panel

Cuadro 2.16 Modelo de efectos fijos de la ecuación 3.11 (estados)

Variable dependiente: $e_{\scriptscriptstyle M}$								
	Método: Mínimos Cuadrados Agrupados							
	Número de secciones cruzadas: 19							
		bservaciones: 266						
Variable	Coeficiente	E. S	Est. t	Prob.				
$q_{_M}$	0.224398	0.023125	9.703564	0.0000				
AGSC	-0.232623	0.027243	-8.538835	0.0000				
BCC	-0.241680	0.027265	-8.864139	0.0000				
COAC	-0.245076	0.027332	-8.966630	0.0000				
CHIC	-0.232406	0.026658	-8.718110	0.0000				
DFC	-0.253687	0.025710	-9.867060	0.0000				
DURC	-0.233560	0.026390	-8.850362	0.0000				
GUAC	-0.229627	0.027599	-8.320048	0.0000				
JALC	-0.228968	0.026343	-8.691955	0.0000				
MEXC	-0.235034	0.026237	-8.958236	0.0000				
MORC	-0.251140	0.026168	-9.597342	0.0000				
NLNC	-0.230636	0.026660	-8.650981	0.0000				
PUEC	-0.238106	0.026578	-8.958818	0.0000				
QUEC	-0.214730	0.026749	-8.027557	0.0000				
SLPC	-0.229576	0.026718	-8.592468	0.0000				
SINC	-0.226684	0.026297	-8.620219	0.0000				
SONC	-0.230710	0.027022	-8.537806	0.0000				
TLAC	-0.250054	0.026398	-9.472372	0.0000				
VERC	-0.247699	0.026645	-9.296447	0.0000				
YUCC	-0.226555	0.026122	-8.672906	0.0000				
R² ajustada	0.264828	D.	W.	1.458463				
Est. F	6.024212							
Prob(Est. F)	0.000000							

Cuadro 2.17 Modelo de efectos aleatorios de la ecuación 3.11 (estados)

Variable dependiente: $e_{_{\scriptscriptstyle M}}$							
Método: Mínimos Cuadrados Generalizados (componentes de la varianza)							
	Número de	secciones cruza	das: 19				
	Obs	servaciones: 266					
Variable	Coeficiente	E. S.	Est. t	Prob.			
С	-0.240465	0.023500	-10.23248	0.0000			
$q_{_{\mathrm{M}}}$	0.228982	0.022562	10.14912	0.0000			
Efectos aleatorios							
AGSC	-0.000918						
BCC	0.001896						
COAC	0.002955						
CHIC	-0.001026						
DFC	0.005518						
DURC	-0.000686						
GUAC	-0.001824						
JALC	-0.002115						
MEXC	-0.000238						
MORC	0.004758						
NLNC	-0.001575						
PUEC	0.000739						
QUEC	-0.006508						
SLPC	-0.001900						
SINC	-0.002827						
SONC	-0.001528						
TLAC	0.004437						
VERC	0.003723						
YUCC	-0.002879						
R² ajustada	0.249928	D	. W.	1.335681			

Cuadro 2.18 Modelo de efectos fijos de la ecuación 3.11 (ramas)

Variable dependiente: $e_{_{\rm M}}$					
Método: Mínimos Cuadrados Agrupados					
Número de secciones cruzadas: 9					
	0	bservaciones: 126			
Variable	Coeficiente	E. S	Est. t	Prob.	
$q_{_M}$	0.315587	0.032730	9.642063	0.0000	
IC	-0.002321	0.004370	-0.531093	0.5964	
IIC	-0.010392	0.004376	-2.374946	0.0192	
IIIC	-0.009151	0.004373	-2.092738	0.0386	
IVC	-0.003109	0.004361	-0.712960	0.4773	
VC	-0.007584	0.004372	-1.734833	0.0854	
VIC	-0.006882	0.004362	-1.577725	0.1174	
VIIC	-0.010174	0.004481	-2.270591	0.0250	
VIIIC	-0.006789	0.004379	-1.550250	0.1238	
IXC	-0.006422	0.004363	-1.472017	0.1437	
R² ajustada	0.431651	D. W.		1.418357	
Est. F	11.54837				
Prob(Est. F)	0.000000				

Cuadro 2.19 Modelo de efectos aleatorios de la ecuación 3.11 (ramas)

Variable dependiente: $e_{_{\! M}}$					
Método: Mínimos Cuadrados Generalizados (componentes de la varianza)					
	Número de secciones cruzadas: 9				
Observaciones: 126					
Variable	Coeficiente	E. S.	Est. t	Prob.	
С	-0.006983	0.001014	-6.888356	0.0000	
$q_{_{M}}$	0.316162	0.030191	10.47205	0.0000	
Efectos aleatorios					
IC	-0.005032				
IIC	0.003676				
IIIC	0.002336				
IVC	-0.004185				

VC	0.000656
VIC	-0.000107
VIIC	0.003468
VIIIC	-0.000202
IXC	-0.000609
R² ajustada	0.401550

Cuadro 2.20 Modelo de efectos fijos de la ecuación 3.14

Variable dependiente: $p_{_{i}}$					
Método: Mínimos Cuadrados Agrupados					
Número de secciones cruzadas: 32					
	(bservaciones: 576			
Variable	Coeficiente E. S Est. t Prob.				
$q_{_M}$	0.527871	0.021859	24.14937	0.0000	
Q_{Li}	-0.004513	0.008589	-0.525476	0.5995	
TME	0.023483	0.020434	1.149244	0.2510	
AGSC	-0.076482	0.060146	-1.271597	0.2041	
BCC	-0.175399	0.062852	-2.790643	0.0054	
BCSC	0.034391	0.057483	0.598281	0.5499	
CAMC	-0.077503	0.057521	-1.347393	0.1784	
COAC	-0.058205	0.061943	-0.939659	0.3478	
COLC	0.025407	0.057904	0.438787	0.6610	
CHIAC	-0.092616	0.058110	-1.593816	0.1116	
CHIC	-0.103213	0.061917	-1.666955	0.0961	
DFC	0.015011	0.061559	0.243843	0.8074	
DURC	-0.155306	0.060743	-2.556762	0.0108	
GUAC	-0.057563	0.061637	-0.933894	0.3508	
GUEC	-0.189713	0.057644	-3.291120	0.0011	
HIDC	-0.036107	0.060692	-0.594927	0.5521	
JALC	-0.104064	0.061210	-1.700130	0.0897	
MEXC	-0.025882	0.063013	-0.410741	0.6814	
MICC	-0.138601	0.059643	-2.323834	0.0205	
MORC	-0.042159	0.059336	-0.710513	0.4777	
NAYC	-0.071200	0.057242	-1.243845	0.2141	

NLNC	-0.039787	0.063156	-0.629979	0.5290
OAXC	-0.060299	0.058494	-1.030865	0.3031
PUEC	-0.055503	0.059037	-0.940139	0.3476
QUEC	-0.083246	0.061800	-1.347041	0.1785
QUIC	-0.060728	0.059128	-1.027060	0.3049
SLPC	-0.077627	0.061413	-1.264016	0.2068
SINC	-0.057793	0.057860	-0.998846	0.3183
SONC	-0.062418	0.059797	-1.043833	0.2970
TABC	-0.058117	0.058262	-0.997513	0.3190
TAMC	-0.089572	0.061386	-1.459156	0.1451
TLAC	-0.058100	0.060573	-0.959187	0.3379
VERC	-0.058613	0.059399	-0.986766	0.3242
YUCC	-0.111602	0.058336	-1.913081	0.0563
ZACC	0.025466	0.057753	0.440949	0.6594
R² ajustada	0.531219	D. W.		2.430402
Est. F	20.16426			
Prob(Est. F)	0.000000			

Cuadro 2.21 Modelo de efectos aleatorios de la ecuación 3.14

Variable dependiente: p_i					
Método: Mínimos Cuadrados Generalizados (componentes de la varianza)					
Número de secciones cruzadas: 32					
	(Observaciones: 576			
Variable	Variable Coeficiente E. S. Est. t Prob.				
С	-0.055991	0.020480	-2.733949	0.0065	
$q_{_{M}}$	0.518362	0.020734	25.00065	0.0000	
Q_{Li}	-0.009266	0.008240	-1.124501	0.2613	
TME	0.019130	0.016671	1.147513	0.2516	
Efectos aleatorios					
AGS—C	0.001876				
вс—с	0.029413				
BCS—C	-0.028136				
CAM—C	0.003284				
COA—C	-0.003308				
COL—C	-0.026046				

СНІА—С	0.007362			
СНІ—С	0.008969			
DF—C	-0.022913			
DUR—C	0.023852			
GUA—C	-0.004457			
GUE—C	0.034742			
HID—C	-0.009035			
JAL—C	0.010303			
MEX—C	-0.011823			
MIC—C	0.019641			
MOR—C	-0.006946			
NAY—C	0.001963			
NLN—C	-0.008304			
OAX—C	-0.001594			
PUE—C	-0.003196			
QUE—C	0.004182			
QUI—C	-0.002612			
SLP—C	0.002164			
SIN—C	-0.002081			
SON—C	-0.001565			
TAB—C	-0.002194			
TAM—C	0.005192			
TLA—C	-0.003009			
VER—C	-0.002262			
YUC—C	0.012564			
ZAC—C	-0.026025			
R² ajustada	0.520360	D.	W.	2.247500

Cuadro 2.22 Modelo de efectos fijos de la ecuación 3.15

	Variable dependiente: $e_{_{M}}$								
	Método: Mínimos Cuadrados Agrupados								
	Número	de secciones cruza	das: 32						
	0	bservaciones: 576							
Variable	Coeficiente	E. S	Est. t	Prob.					
$q_{_M}$	0.494153	0.035430	13.94714	0.0000					
$\mathbf{k}_{_{\mathrm{M}}}$	0.070756	0.020701	3.417945	0.0007					
AGSC	0.092613	0.053971	1.715992	0.0867					
BCC	0.126538	0.053496	2.365383	0.0184					
BCSC	0.120801	0.052891	2.283963	0.0228					
CAMC	0.125378	0.052953	2.367739	0.0182					
COAC	0.018871	0.053316	0.353954	0.7235					
COLC	0.049447	0.053553	0.923328	0.3562					
CHIAC	0.132185	0.053741	2.459682	0.0142					
CHIC	0.069791	0.053520	1.304007	0.1928					
DFC	-0.027854	0.052688	-0.528662	0.5973					
DURC	0.135127	0.053020	2.548616	0.0111					
GUAC	0.027157	0.053700	0.505710	0.6133					
GUEC	0.174552	0.053021	3.292141	0.0011					
HIDC	0.019779	0.052923	0.373733	0.7087					
JALC	0.074465	0.052821	1.409776	0.1592					

0.052796

0.052974

0.053106

0.052955

0.052851

0.053803

0.053074

0.053172

0.054039

0.052964

0.052885

0.053201

0.1300 Continúa...

0.7203

0.0316

0.2584

0.5358

0.8310

0.2541

0.5871

0.4124

0.0001

0.5297

0.0932

0.358184

2.155354

1.131367

0.619591

0.213498

1.141547

0.543381

0.820267

3.891880

0.628834

1.681667

1.516569

MEX--C

MIC--C

MOR--C

NAY--C

NLN--C

OAX--C

PUE--C

QUE--C

QUI--C

SLP--C

SIN--C

SON--C

0.018911

0.114177

0.060082

0.032811

0.011284

0.061419

0.028840

0.043615

0.210315

0.033306

0.088934

0.080683

TABC	0.091582	0.053096	1.724851	0.0851
TAMC	0.111580	0.053632	2.080482	0.0380
TLAC	0.021062	0.053169	0.396130	0.6922
VERC	0.034691	0.052878	0.656057	0.5121
YUCC	0.126590	0.053065	2.385545	0.0174
ZACC	0.080597	0.053437	1.508280	0.1321
R² ajustada	0.606011	D.	W.	2.379010
Est. F	27.80092			
Prob(Est. F)	0.000000			

Cuadro 2.23 Test de Wald, ecuación 3.15, efecto aleatorios

Test Wald						
Test estadístico	Valor	df	Probabilidad			
Estadístico F	54.77	(1, 571)	0.0000			
Chi-cuadrada	54.77	1	0.0000			
Resume de la hipótesis nula:						
Restricción norma	lizada (= 0)	Valor	E.S.			
Rendimientos co	onstantes	.880478	.118968			

Cuadro 2.24 Modelo de efectos aleatorios de la ecuación 3.15

	Vari	able dependiente:	$e_{_{M}}$						
Método: Mí	Método: Mínimos Cuadrados Generalizados (componentes de la varianza)								
Número de secciones cruzadas: 32									
	Observaciones: 576								
Variable	Coeficiente	E. S.	Est. t	Prob.					
С	0.069631	0.010866	6.408002	0.0000					
$q_{_{\mathrm{M}}}$	0.507411	0.022854	22.20261	0.0000					
k _M	0.075332	0.015850	4.752889	0.0000					
Efectos aleato- rios									
AGS—C	-0.002819								
вс—с	-0.010114								
BCS—C	-0.009443								
CAM—C	-0.010231								
COA—C	0.011366								
COL—C	0.005492								
СНІА—С	-0.011527								
СНІ—С	0.001106								
DF—C	0.019234								
DUR—C	-0.012612								
GUA—C	0.010171								
GUE—C	-0.020383								
HID—C	0.010809								
JAL—C	-0.000464								
MEX—C	0.010213								
MIC—C	-0.008260								
MOR—C	0.003002								
NAY—C	0.008500								
NLN—C	0.012181								
OAX—C	0.003276								
PUE—C	0.009093								
QUE—C	0.006258								
QUI—C	-0.026251								
SLP—C	0.008328								

SIN—C	-0.003166		
SON—C	-0.001109		
TAB—C	-0.003214		
TAM—C	-0.007042		
TLA—C	0.010864		
VER—C	0.007638		
YUC—C	-0.010326		
ZAC—C	-0.000569		
R² ajustada	0.596829	D. W.	2.204562

Cuadro 2.25 Test de Wald, ecuación 3.15, efectos aleatorios

Test Wald						
Test estadístico	Valor	df	Probabilidad			
Estadístico F	20.08	(1, 573)	0.0000			
Chi-cuadrada	20.08	1	0.0000			
Resume de la hipótesis nula:						
Restricción normalizada (= 0)		Valor	E.S.			
Rendimientos c	onstantes	5.538896	1.235989			

Cuadro 2.26 Modelo de efectos fijos de la ecuación 3.16

Variable dependiente: $q_{_M}$ Método: Mínimos Cuadrados Agrupados Número de secciones cruzadas: 32 Observaciones: 576

Observaciones: 576				
Variable	Coeficiente	E. S	Est. t	Prob.
$e_{_M}$	0.895648	0.058369	15.34448	0.0000
k _M	0.139713	0.031174	4.481745	0.0000
AGSC	0.181705	0.081226	2.237024	0.0257
BCC	0.104719	0.039483	2.652224	0.0082
BCSC	-0.001864	0.081391	-0.022902	0.9817
CAMC	-0.005407	0.083138	-0.065038	0.9482
COAC	0.182166	0.049418	3.686219	0.0003
COLC	0.181874	0.068745	2.645622	0.0084
CHIAC	0.136265	0.107002	1.273480	0.2034
CHIC	0.165924	0.088529	1.874243	0.0614
DFC	-0.007027	0.067734	-0.103747	0.9174
DURC	0.029825	0.055829	0.534227	0.5934
GUAC	0.215334	0.072923	2.952907	0.0033
GUEC	-0.005208	0.050517	-0.103087	0.9179
HIDC	0.113114	0.127935	0.884151	0.3770
JALC	0.040480	0.045126	0.897053	0.3701
MEXC	0.057921	0.029922	1.935716	0.0534
MICC	0.040115	0.036789	1.090413	0.2760
MORC	0.105419	0.071230	1.479982	0.1395
NAYC	0.065817	0.055435	1.187296	0.2356
NLNC	0.102175	0.033352	3.063539	0.0023
OAXC	0.198759	0.125607	1.582387	0.1141
PUEC	0.135566	0.062395	2.172697	0.0302
QUEC	0.137700	0.051509	2.673327	0.0077
QUIC	0.019336	0.057469	0.336466	0.7366
SLPC	0.094774	0.057930	1.636003	0.1024
SINC	0.040779	0.049458	0.824534	0.4100
SONC	0.105167	0.064049	1.641961	0.1012
TABC	0.051960	0.081289	0.639200	0.5230

TAMC	0.137325	0.078171	1.756715	0.0795
TLAC	0.155605	0.045008	3.457251	0.0006
VERC	0.090659	0.087951	1.030786	0.3031
YUCC	0.015401	0.049427	0.311596	0.7555
ZACC	0.085750	0.108712	0.788780	0.4306
R² ajustada	0.616057	Ι	D. W.	2.440789
Est. F	28.95809			
Prob(Est. F)	0.000000			

Cuadro 2.27 Test de Wald, ecuación 3.16, efecto aleatorios

Test Wald						
Test estadístico	Valor	df	Probabilidad			
Estadístico F	0.609794	(1, 574)	0.0000			
Chi-cuadrada	0.609794	1	0.0000			
Resume de la hipótesis nula:						
Restricción norma	lizada (= 0)	Valor	E.S.			
Rendimientos co	onstantes	0.035361	0.045282			

Cuadro 2.28 Modelo de efectos aleatorios de la ecuación 3.16

Variable dependiente: $q_{_{\rm M}}$					
Método: Mínim	os Cuadrados	Generalizados (co	mponentes de la va	arianza)	
	Número	de secciones cruza	das: 32		
	0	bservaciones: 576			
Variable	Coeficiente	E. S.	Est. t	Prob.	
С	0.089611	0.014760	6.071288	0.0000	
$\mathbf{e}_{_{\mathrm{M}}}$	0.910908	0.041078	22.17512	0.0000	
$k_{_{M}}$	0.135635	0.020900	6.489728	0.0000	
Efectos aleatorios					
AGS—C	-0.014017				
вс—с	-0.001652				
BCS—C	0.015229				
CAM—C	0.015808				

COA—C -0.014407 COL—C -0.014229 CHIA—C -0.006621 CHI—C -0.011604 DF—C 0.015408 DUR—C 0.010275	
CHIA—C -0.006621 CHI—C -0.011604 DF—C 0.015408	
CHI—C -0.011604 DF—C 0.015408	
DF—C 0.015408	
DUR—C 0.010275	
GUA—C -0.019637	
GUE—C 0.016002	
HID—C -0.003448	
JAL—C 0.008316	
MEX—C 0.005313	
MIC—C 0.008548	
MOR—C -0.002054	
NAY—C 0.004101	
NLN—C -0.001745	
OAX—C -0.016857	
PUE—C -0.006969	
QUE—C -0.007244	
QUI—C 0.012243	
SLP—C -0.000486	
SIN—C 0.008329	
SON—C -0.001923	
TAB—C 0.006558	
TAM—C -0.006889	
TLA—C -0.010185	
VER—C 0.000182	
YUC—C 0.012512	
ZAC—C 0.001143	
R ² ajustada 0.612942 D. W. 2.2883	20

Cuadro 2.29 Test de Wald, ecuación 3.16, efecto aleatorios

	Test Wa	ald	
Test estadístico	Valor	df	Probabilidad
Estadístico F	1.773453	(1, 573)	0.1835
Chi-cuadrada	1.773453	1	0.1830
	Resume de la hipótesis nula:		
Restricción normalizada (= 0)		Valor	E.S.
Rendimientos constantes		0.046543	0.034950

• Tercera ley de Kaldor

Cuadro 2.30 Modelo de efectos fijos de la ecuación 3.19

	Vari	able dependiente:	$p_{_{PC}}$	
	Método: Mí	nimos Cuadrados A	grupados	
	Número	de secciones cruza	das: 32	
	(Observaciones: 96		
Variable	Coeficiente	E. S	Est. t	Prob.
$q_{_M}$	-0.014157	0.111454	-0.127023	0.8993
e _{nm}	-0.024902	0.062542	-0.398160	0.6919
AGSC	0.012854	0.007465	1.721804	0.0901
BCC	0.000962	0.006607	0.145629	0.8847
BCSC	0.004945	0.006426	0.769471	0.4445
CAMC	0.012875	0.006354	2.026381	0.0470
COAC	0.008133	0.006674	1.218560	0.2276
COLC	-0.004546	0.006343	-0.716583	0.4763
CHIAC	-0.001453	0.006512	-0.223177	0.8241
CHIC	0.010301	0.006655	1.547944	0.1267
DFC	0.005408	0.006313	0.856617	0.3950
DURC	0.008927	0.006408	1.393075	0.1686
GUAC	0.009760	0.006685	1.459903	0.1494
GUEC	0.005787	0.006350	0.911320	0.3657
HIDC	-0.007822	0.006260	-1.249443	0.2162
JALC	0.003208	0.006308	0.508572	0.6129
MEXC	0.000445	0.006345	0.070120	0.9443

MICC	0.006336	0.006306	1.004722	0.3189
MORC	0.008457	0.006412	1.318808	0.1921
NAYC	0.001977	0.006434	0.307309	0.7596
NLNC	0.006260	0.006397	0.978644	0.3316
OAXC	0.005907	0.006368	0.927556	0.3572
PUEC	0.005284	0.006479	0.815554	0.4179
QUEC	0.009827	0.006688	1.469255	0.1468
QUIC	0.010836	0.007390	1.466193	0.1476
SLPC	0.010033	0.006538	1.534474	0.1300
SINC	0.005860	0.006296	0.930782	0.3556
SONC	-0.003957	0.006666	-0.593576	0.5550
TABC	-0.007798	0.006292	-1.239202	0.2199
TAMC	0.004307	0.006602	0.652460	0.5165
TLAC	0.003443	0.006488	0.530731	0.5975
VERC	0.001775	0.006252	0.283883	0.7774
YUCC	-0.002997	0.006415	-0.467232	0.6420
ZACC	0.010550	0.006432	1.640390	0.1060
R² ajustada	-0.092043	D.	W.	2.764595
Est. F	0.757362			
Prob(Est. F)	0.805660			

Cuadro 2.31 Modelo de efectos aleatorios de la ecuación 3.19

Método: Mín		ible dependiente: <i>q</i> Generalizados (co	141/4	rianza)
	Número o	de secciones cruzac	las: 32	
	0	bservaciones: 96		
Variable	Coeficiente	E. S.	Est. t	Prob.
С	0.002997	0.001363	2.199186	0.0303
$q_{_{M}}$	0.123593	0.067651	1.826915	0.0709
e _{nm}	-0.008003	0.059434	-0.134649	0.8932
Efectos aleatorios				
AGS—C	-0.001901			
вс—с	0.001836			
BCS—C	-0.000240			
САМ—С	-0.004297			

COA—C	-0.000872		
COL—C	0.003442		
СНІА—С	0.000964		
СНІ—С	-0.001759		
DF—C	-0.001053		
DUR—C	-0.001631		
GUA—C	-0.001507		
GUE—C	-0.000540		
HID—C	0.004532		
JAL—C	0.000312		
МЕХ—С	0.001448		
MIC—C	-0.000917		
MOR—C	-0.001489		
NAY—C	-0.000254		
NLN—C	-0.000682		
OAX—C	-0.000533		
PUE—C	-6.74E-05		
QUE—C	-0.001573		
QUI—C	-0.001323		
SLP—C	-0.001843		
SIN—C	-0.000829		
SON—C	0.003938		
TAB—C	0.004220		
TAM—C	0.000540		
TLA—C	0.000673		
VER—C	0.000597		
YUC—C	0.003079		
ZAC—C	-0.002271		
R² ajustada	-0.238454	D. W.	

Esta obra se terminó de imprimir en agosto de 2011 en Talleres Gráficos del Gobierno del Estado, Calle 4a., No. 3013.

Chihuahua, Chihuahua, México.

Tiraje: 300 ejemplares